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Abstract

We investigated the entanglement between two identical two-level Rydberg atoms successively passing cavity and interacting with
one-mode field through a one-photon and degenerate two-photon processes. For two-photon interaction, we focused our attention
on the study of atomic entanglement dynamics in the presence of the Stark shift and initial atomic coherence. For one-photon case
we discussed the influence of atomic coherence, detuning and cavity thermal photons on the entanglement dynamics for entangled
initial atomic states.
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1. Introduction

Entanglement is not only one of the most surprising features of quantum theory, but also provides an important resource for
various quantum information processes such as quantum information, quantum communication, and quantum cryptography [1].
Therefore, great efforts have been made to investigate entanglement characterization, entanglement control, and entanglement pro-
duction in different systems [2]. One of the particular interest schemes in which entanglement can be created is a system containing
two two-level atoms, since they can represent two qubits, the building blocks of the quantum gates that are essential to implement
quantum protocols in quantum information processing. Two-atom entangled states have been demonstrated experimentally using
ultra cold trap ions, impurity spins in solids, superconducting circuits and cavity quantum electrodynamics schemes [1]. Cavity
QED has been used to generate the atom-atom and atom-photon entanglement. The entanglement between two two initially in-
dependent atoms successively passing the vacuum cavity have been demonstrated by S. Haroche et all. [3]. The entanglement
procedure involves the resonant coupling, one by one, of the atoms to a high Q microwave superconducting cavity. The atoms,
prepared in circular Rydberg states, exchange a single photon in the cavity and become entangled by this indirect interaction. The
effect have been demonstrated with pairs of atoms separated by centimetric distances. Maximally entangled states between two
modes in a single cavity have been generated using a Rydberg atom coherently interacting with each mode in turn [4]. The above
entanglement investigations involved mostly the absorption or emission of a single photon in an atomic transition. Two-photon
processes have also been studied in cavity QED [5]. Haroche and co-workers have demonstrated experimentally the two-photon
maser action in a micromaser cavity [6]. The two-photon atomic transition process also introduces a dynamic Stark shift in the
atomic transition which is related to the magnitude of the electric field of the radiation inside. Ghosh et al. [7] have investigated the
entanglement properties of two Rydberg atoms with Stark-shifted two-photon atomic transitions passing through a single-mode
cavity. They have shown that the Stark shift can be used to enhance the magnitude of atomic entanglement over that obtained in the
resonant condition for certain parameter values. They have assumed that the two atoms are in their respective upper states before
they enter the cavity empty of photons. Hu et al [8, 9] have shown that the entanglement between two atoms induced by one-mode
cavity field can be manipulated by changing the initial atomic coherence. Yan [10] has investigated the entanglement properties of
two atoms successively passing a cavity with Fock or thermal field but especially focused on the case when two atoms are initially
in an entangled state. In our works [11]-[14] we have reexamined the dynamics of entanglement of two atoms successively passing
a thermal cavity for another type of initial entangled atomic state. In this paper we have investigated the influence of initial atomic
coherence on atom-atom entanglement for one-photon and two-photon transitions in two-level atom. For two-photon transitions
we have taken into account in the presence of Stark shift. We also have discussed the dynamics of two previously entangled atoms
taking into account the detuning and thermal cavity photon. We have found that the entanglement between two separate atoms
can be induced by the thermal field, even if there is a frequency detuning between atoms and field, and the threshold time for the
creation of the entanglement can be controlled by the model parameters.

2. Dynamics of atom-atom entanglement in the presence the Stark shift and initial atomic coherence

In this section we consider the system which consists of two separate identical three-level atoms passing through a cavity one
after another with equal velocities. We suppose that atoms interact with cavity field via degenerate two-photon transitions and take
into account the dynamical Stark shift. To obtain the effective degenerate two-photon Jaynes-Cummings model one can consider
three-level atom with atomic states |e〉, |i〉, |g〉, where |e〉 is the excited, |g〉 is the ground and |i〉 is the intermediate states of atom.
The model under consideration is obtained when a cascade of the atomic transitions |e〉 → |i〉 → |g〉 is resonant with twice the field
frequency ωeg = 2ω whereas the intermediate transition frequencies ωei = ω + ∆ and ωei = ω − ∆ are strongly detuned from ω,
where ω is the cavity mode frequency. After adiabatically eliminating the intermediate state, one arrives at the effective interaction
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picture Hamiltonian of one atom with degenerate two-photon transitions in the RWA approximation and in the presence of the
Stark shift

H = ~g(a+2
σ− + σ+a2) + ~β1a+a σ+σ− + ~β2a+a σ−σ+, (1)

where σ+ and σ− are the quasi-spin operators, a+ and a are the creation and annihilation photon operators of the one-mode cavity
field, g is the two-photon atom-field coupling constant and β1, β2 are the parameters of the Stark shift of the ground and excited
states in two-level atom We assume that the atom-field coupling is constant (thus we neglect the dependence of the spatial structure
of the cavity mode). Following the exit of the first atom, a second atom enters the cavity and interacts with the field modified by
interaction with the first atom. Assume that the total atom-cavity interaction time is considerably less than the cavity lifetime and
that we can ignore the effects of cavity dissipation.

Let the first of atoms passing the cavity is initially prepared in coherent superposition of the excited and the ground states

|ΨA1 (0)〉 = cos θ1|+〉1 + sin θ1|−〉1 (2)

and one-mode cavity field is in vacuum state |0〉. Then the initial wave-function of the system ”first atom+field” has the form
|ΨA1F(0)〉 = cos θ1|+; 0〉 + sin θ1|−; 0〉.

The wave function of considered system for time moments τ when the first atom leaves the cavity, can be written in the form

|ΨA1F(τ)〉 = X1(τ)|+; 0〉 + X2(τ)|−; 2〉 + X3(τ)|−; 0〉.

To derive the coefficients Xi(t) one ca solve the time-dependent Schrödinger equation. The solution of this equation has the
following form

X1(τ) = e−ıgτ/β1 cos θ1 [cos(Ωτ) + (ı/Ω) sin(Ωτ)] , X2(τ) = (−ı
√

2/Ω)e−ıgτ/β1 sin(Ωτ), X3(τ) = sin θ1,

where Ω = g
√

(β1/g)2 + 2. Further we will measure a new time from the moment when the second atom will begin passing through
the resonator. Let us suppose that the second atom reaches the cavity being in the coherent state of the following form

|ΨA2 (0)〉 = cos θ2|+〉2 + sin θ2|−; 0〉2. (3)

Then the initial state of the system ”two atoms+field” at this moment is

|ΨA1A2F(0)〉 = |ΨA1F(τ)〉|ΨA2 (0)〉 = X1(τ) cos θ2|+,+; 0〉 + X1(τ) sin θ2|+,−; 0〉 + X2(τ) cos θ2|−,+; 2〉+

+X2(τ) sin θ2|−,−; 2〉 + X3(τ) cos θ2|−,+; 0〉 + X3(τ) sin θ2|−,−; 0〉.

As velocities of atoms are equal, the both atoms pass through the cavity during the same time. At the instant t = τ the second
atom leaves the cavity. In this time the wave function of the system ”two atoms+field” is

|ΨA1A2F(τ, t)〉 = Y1(t)|+,+; 0〉 + Y2(t)|+,−; 2〉 + Y2(t)|+,−; 0〉 + Y4(t)|−,−; 4〉+ (4)

+Y5(t)|−,+; 2〉 + Y6(t)|−,+; 0〉 + Y7(t)|−,−; 2〉 + Y8(t)|−,−; 0〉.

The equation of motion for time-dependent coefficients Yi(t) have the form

ıẎ1 =
√

2gY2, ıẎ1 =
√

2gY1 + 2β2Y2, ıẎ3 = 0, ıẎ4 =
√

12gY5 + 4β2Y4, (5)

ıẎ5 =
√

12gY4 + 2β1Y5, ıẎ6 =
√

2gY7, ıẎ7 =
√

12gY6 + 2β2Y7, ıẎ8 =
√

2gY7 = 0.

Using dressed-state representation one can obtain the exact solutions for equations (5). But these solutions are too cumbersome to
present them in the paper. Therefore we have used the numerical solutions of equations (5) for entanglement dynamics modeling.

To investigate the entanglement between qubits one has to obtain the time-dependent reduced density operator by tracing the
combined atoms-field density operator over the field variables:

ρA1A2 (τ, t) = TrF |ΨA1A2F(τ, t)〉〈ΨA1A2F(τ, t)|.

For two-qubit system described by the density operator ρA1A2 , a measure of entanglement or negativity can be defined in terms of
the negative eigenvalues µ−i of partial transpose of the reduced density matrix [15, 16]

ε = −2
∑

i

µ−i . (6)

ε = 0 indicates that two qubits are separable, ε > 0 indicates the atom-atom entanglement and ε = 1 indicates maximum
entanglement. Using eqs (2)-(5) and two-atom basis |e, e〉, |e, g〉, |g, e〉, |g, g〉 one can obtain the reduced density matrix at time t
in the .

ρA1A2 (τ, t) =


ρ11(τ, t) ρ12(τ, t) ρ13(τ, t) ρ14(τ, t)
ρ∗12(τ, t) ρ22(τ, t) ρ23(τ, t) ρ24(τ, t)
ρ∗13(τ, t) ρ∗23(τ, t) ρ33(τ, t) ρ34(τ, t)
ρ∗14(τ, t) ρ∗24(τ, t) ρ∗34(τ, t) ρ44(τ, t)

 , (7)
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where
ρ11(τ, t) = |Y1(τ, t)|2, ρ12 = Y1(τ, t)Y3(τ, t)∗, ρ13 = Y1(τ, t)Y∗6 , ρ14 = Y1(τ, t)Y8(τ, t)∗, ,

ρ22(τ, t) = |Y2(τ, t)|2 + |Y3(τ, t)|2, ρ23 = Y2(τ, t)Y5(τ, t)∗ + Y3(τ, t)Y6(τ, t)∗,

ρ24(τ, t) = Y2(τ, t)Y7(τ, t)∗ + Y3(τ, t)Y8(τ, t)∗, ρ33 = |Y5(τ, t)|2 + |Y6(τ, t)|2,

ρ34(τ, t) = Y5(τ, t)Y7(τ, t)∗ + Y6(τ, t)Y8(τ, t)∗, ρ44 = |Y4(τ, t)|2 + |Y7(τ, t)|2 + |Y8(τ, t)|2.

Accordingly, we can write down the partial transpose matrix as

ρT1
A1A2

(τ, t) =


ρ11(τ, t) ρ12(τ, t) ρ31(τ, t) ρ32(τ, t)
ρ21(τ, t) ρ22(τ, t) ρ41(τ, t) ρ42(τ, t)
ρ13(τ, t) ρ14(τ, t) ρ33(τ, t) ρ34(τ, t)
ρ23(τ, t) ρ24(τ, t) ρ43(τ, t) ρ44(τ, t)

 . (8)

Let us consider the numerical calculations of atomic entanglement for various initial states of two two-level atoms and various
values of Stark shift parameters. Below we put that β1 = β2 = 1.

The results of computer modeling of negativity (6) for considered model have been presented in Fig. 1. Fig. 1(a) shows the
time dependencies of atomic entanglement versus parameter gτ for different values of Stark shift parameter β in the case when
both atoms successively passing a cavity are initially prepared in excited states. We will note that in a case when both atoms are
prepared in the excited states and simultaneously interact with a common cavity, the entanglement does not arise. The maximum
degree of entanglement when both atoms fly through the cavity is approximately equal 0.6. With increasing of the value of Stark
shift parameter the maximum value of atomic entanglement decreases. Fig. 1(b) shows the time behavior of the entanglement
parameters versus gτ for coherent initial atomic states of the form |ΨA〉 = 1/

√
2(|+〉 + |−〉). In the considered case the maximum

degree of entanglement when both atoms fly through the cavity is approximately equal 0.4. Thus dependence of entanglement
parameter from time of atom flying through the cavity has the nonmonotonic character. For 0 ≤ β ≤ 2 the maximum degree
of entanglement increases with increasing the parameter β and for β > 2 the dependence is reverse. It is possible to sustain the
entanglement over a range of interaction times by making the detuning and the Stark shift compensate each other.

(a) (b)
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Fig. 1. Entanglement for incoherent initial atomic state |e, g〉 (a) and coherent initial atomic state 1/
√

2(|+,−〉 + |−,+〉) (b). The Stark shift
parameters are β = 0 (solid), β/g = 1 (dashed) and β/g = 2 (dotted).

3. Dynamics of atom-atom entanglement in the presence the thermal cavity photon and initial atomic coherence

In this section, we will study the effect of the initial atomic coherence on the atom-atom entanglement for a thermal cavity.
The physical system under consideration consists of two separate identical two-level Rydberg atoms A1 and A2 passing through a
cavity one after another and interacting with the cavity field through the one-photon transition. The Hamiltonian of the joint ”one
atom+field” system with the dipole and rotating wave approximation can be written as

H = ~g (a+σ−i + aσ+
i ), (9)

where we use the same notation as in section 2. Let both atoms passing the cavity is initially prepared in coherent superposition
of the excited and the ground states as in section 2 but field is in a thermal state

ρF(0) =
∑

n

pn|n〉〈n|, (10)

where pn = n̄n/(1 + n̄)n+1. Here n̄ is the mean photon number in the cavity mode n̄ = (exp[~ω/kBT ]−1]−1 and kB is the Boltzmann
constant and T is the equilibrium temperature of the cavity mirrors.
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Solving the quantum Liouville equation for two successive stages of atoms dynamics described in Section 2 one can obtain the
time-dependent combined density matrix. To investigate the entanglement between qubits one has to obtain the time-dependent
reduced density operator by tracing the combined atoms-field density operator over the field variables. When the second atom
leaves the cavity the reduced density matrix in two-atom basis |+,+〉, |+,−〉, |−,+〉, |−,−〉 has the form (7) with

ρ11 =
∑

n

pn(|X1n|
2 + |X2n|

2 + |X3n|
2), ρ12 =

∑
n

pn(X1nX∗4n + X2nX∗5n),

ρ13 =
∑

n

pn(X1nX∗7n + X2nX∗9n), ρ14 =
∑

n

pnX1nX∗10n,

ρ22 =
∑

n

pn(|X4n|
2 + |X5n|

2 + |X6n|
2), ρ23 =

∑
n

pn(X4nX∗7n + X5nX∗9n + X6nX∗8n),

ρ24 =
∑

n

pn(X4nX∗10n + X6nX∗11n), ρ33 =
∑

n

pn(|X7n|
2 + |X8n|

2 + |X9n|
2),

ρ34 =
∑

n

pn(X7nX∗10n + X8nX∗11n), ρ44 =
∑

n

pn(|X10n|
2 + |X11n|

2 + |X12n|
2),

where

X1n(τ, t) = a cos(
√

n + 1gτ) cos(
√

n + 1gt), X2n(τ, t)] = −i
(
c sin(

√
ngτ) cos(

√
ngt) + b cos(

√
n + 1gτ) sin(

√
ngt

)
,

X3n(τ, t) = −d sin(
√

ngτ) sin(
√

(n − 1)gt), X4n(τ, t) = −c sin(
√

ngτ) sin(
√

ngt) + b cos(
√

n + 1gτ) cos(
√

ngt),

X5n(τ, t) = −id sin(
√

ngτ) cos(
√

(n − 1)gt), X6n(τ, t) = −ia cos(
√

n + 1gτ) sin(
√

n + 1gt),

X7n(τ, t) = c cos(
√

ngτ) cos(
√

n + 1gt) − b sin(
√

n + 1gτ) sin(
√

n + 1gt),

X8n(τ, t) = −ia sin(
√

n + 1gτ) cos(
√

n + 2gt),

X9n(τ, t) = −id cos(
√

ngτ) sin(
√

ngt), X10n(τ, t) = d cos(
√

ngτ) cos(
√

ngt),

X11n(τ, t) = −i
(
c cos(

√
ngτ) sin(

√
n + 1gt) + b sin(

√
n + 1gτ) cos(

√
n + 1gt

)
,

X12n(τ, t) = −a sin(
√

n + 1gτ) sin(
√

n + 2gt).

The partial transpose matrix for considered model has the form (8). The results for time dependence of negativity (6) for different
degrees of atomic coherence and mean photon numbers have presented in Fig 2.

The results of computer modeling of negativity (6) for considered model have been presented in Fig. 2. The Fig. 2(a) clearly
shows that the entanglement of the atoms occurs for any initial atomic states, in particular in the case when both atoms are initially
excited. The initial atomic coherence reduces the degree of entanglement. This behavior of entanglement for atoms successively
passing a resonator is fundamentally different from that for atoms interacting with a common thermal field in the resonator. In
the latter case, the presence of the initial atomic coherence leads to a significant increase in atomic entanglement even in case
of intensive thermal field. Fig. 2(b) shows that the quantum correlations between the atoms arises only for thermal fields of low
intensity, when the mean photon number does not exceed the unity, respectively the resonator temperature does not exceed 4 K.

(a) (b)

Fig. 2. Entanglement for incoherent initial and coherent atomic states. For figure 2(a) the mean photon number n̄ = 0.1 and polarized atoms
amplitudes θ1 = θ2 = 0 (solid) and θ1 = θ2 = π/4 (dashed). For figure 2(b) θ1 = θ2 = π/4 and n̄ = 0 (solid) and n̄ = 0.5 (dashed).
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4. Dynamics of atom-atom entanglement in the presence detuning

In this section, we will study the influence of initial atomic quantum correlations on the atom-atom entanglement for a thermal
cavity. The physical system under consideration consists of two separate identical two-level Rydberg atoms A1 and A2 pass-
ing through a cavity one after another and non-resonantly interacting with the cavity field. The Hamiltonian of the joint ”one
atom+field” system with the dipole and rotating wave approximation can be written as

H = (1/2)~ωσz
i + ~ω a+a + ~g (a+σ−i + aσ+

i ), (11)

where (1/2)σz
i is the inversion operator in the i-th atom (i = 1, 2), , ω0 is the transition frequency in two-level atoms, ω is the

frequency of the cavity mode. The other notations are the same as in previous sections. We introduce the detuning as δ = ω0 − ω.
The evolution operator corresponding to the Hamiltonian (11) is

UAi (t) = e
ıω0 t

2 |0,−i〉〈0,−i| +

∞∑
n=0

e−ıω(n+ 1
2 )t {An|n + 1,−i〉〈n + 1,−i| + Bn|n,+i〉〈n,+i|+

+Cn (|n + 1,−i〉〈n,+i| + |n,+i〉〈n + 1,−i|)} .

Here
An = cos(∆nt/2) + ı

δ

∆n
sin(∆nt/2), Bn = cos(∆nt/2) − ı

δ

∆n
sin(∆nt/2), Cn = ı

Ωn

∆n
sin(∆nt/2),

where ∆n =
√
δ2 + Ω2

n, Ωn = 2g
√

n + 1 and |n〉 is the Fock state for the cavity mode.
Suppose that before the first atom enters the cavity the two atoms have been prepared in Bell-type entangled state of the form

|Ψ(0)〉A1 A2 = cos Θ|+,−〉 + sin Θ|−,+〉, (12)

where the parameter Θ defines the degree of initial atomic entanglement (0 ≤ Θ ≤ π), and one-mode cavity field is in a thermal
state (10).

The initial density matrix of the whole system is

ρA1A2F(0) = ρA1A2 (0)ρF(0) =
∑

n

pn|Ψ(0)〉A1A2 A1A2〈Ψ(0)| ⊗ |n〉〈n|,

The density matrix of considered system for time moment τ when the first atom leaves the cavity, can be written as

ρA1A2F(τ) = UA1 (τ)ρA1A2F(0)U+
A1

(τ). (13)

The density matrix (3) on the other hand is the initial state of the system prior to entering into the cavity of the second atom. At
the moment t when the second atom leaves the cavity the density matrix takes the form

ρA1A2F(t, τ) = UA2 (t)ρA1A2F(τ)U+
A2

(t) (14)

Taking a partial trace over the field variables one can obtain from (14) the reduced atomic density operator ρA1A2 (t, τ) =

TrF ρA1A2F(t, τ). Omitting the cumbersome calculations one can be obtain for reduced atomic density operator in the form

ρA1A2 (t, τ) =



U(t, τ) 0 0 0

0 V(t, τ) H(t, τ) 0

0 H(t, τ)∗ W(t, τ) 0

0 0 0 R(t, τ)


. (15)

We have obtained the exact formulae for the matrix elements of (15). But these are too cumbersome to present them in the paper.
Using the matrix (15) one can obtain the negativity (6) in the following form

ε(t, τ) =
√

(U(t, τ) − R(t, τ))2 + 4|H(t, τ)|2 − U(t, τ) − R(t, τ); (16)

We also consider the another Bell-type initial atomic entangled state

|Ψ(0)〉A1 A2 = cos Θ|+,+〉 + sin Θ|−,−〉. (17)

For initial atomic state (17) and a thermal cavity field the reduced atomic density operator has the form

ρA(t, τ) =



M(t, τ) 0 0 F(t, τ)

0 N(t, τ) S (t, τ) 0

0 S (t)∗ O(t, τ) 0

F∗(t, τ) 0 0 P(t, τ)


. (18)
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The matrix elements of (18) are

M(t, τ) = M1(t, τ) + M2(t, τ), N(t, τ) = N1(t, τ) + N2(t, τ), O(t, τ) = O1(t, τ) + O2(t, τ),

P(t, τ) = P1(t, τ) + P2(t, τ), S (t, τ) = S 1(t, τ) + S 2(t, τ), F(t, τ) = sin θ cos θ
∞∑

n=0

pnBn(τ)Bn(t]A∗n−1(τ)A∗n−1(t),

where

M1(t, τ) = (cos θ)2

 ∞∑
n=1

pn|Bn(t)|2|Bn(τ)|2 + p0|B0(t)|2|B0(τ)|2
 ,

N1(t, τ) = (cos θ)2

 ∞∑
n=1

pn|Cn(t)|2|Bn(τ)|2 + p0|C0(t)|2B0(τ)|2
 ,

O1(t, τ) = (cos θ)2

 ∞∑
n=1

pn|Bn+1(t)|2|Cn(τ)|2 + p0|C0(τ)|2|B1(t)|2
 ,

P1(t, τ) = (cos θ)2

 ∞∑
n=1

pn|Cn+1(t)|2|Cn(τ)|2 + p0|C1(t)|2|C0(τ)|2
 ,

S 1(t, τ) = (cos θ)2

 ∞∑
n=1

pnBn(τ)Cn(t)C∗n(τ)B∗n+1(t) + p0B0(τ)C0(t)C∗0(τ), t]]B∗1(t)

 ,
M2(t, τ) = (sin θ)2

∞∑
n=2

pn|Cn−1(τ)|2|Cn−2(t)|2,

N2(t, τ) = (sin θ)2
∞∑

n=1

pn|Cn−1(τ)|2|An−2(t)|2, O2(t, τ) = (sin θ)2
∞∑

n=1

pn|An−1(τ)|2|Cn−1(t)|2,

P2(t, τ) = (sin θ)2

 ∞∑
n=1

pn|An−1(τ)|2|An−1(t)|2 + p[0]

 , S 2(t, τ) = (sin θ)2
∞∑

n=1

pnCn−1(τ)An−2(t)A∗n−1(τ)C∗n−1(t).

The partial transpose of the reduced atomic density matrix (18) is

ρT1
A (t, τ) =



M(t, τ) 0 0 S ∗(t, τ)

0 N(t, τ) F∗(t, τ) 0

0 F(t, τ) O(t, τ) 0

S (t, τ) 0 0 P(t, τ)


. (19)

Matrix (19) has two eigenvalues, which may take a negative value. Then, the negativity can be written as a superposition of two
terms. At the same time, each term contributes to the total amount, as long as it takes a positive value. As a result the negativity is

ε(t, τ) =
√

(N(t, τ) − O(t, τ))2 + 4|F(t, τ)|2 − N(t, τ) − O(t, τ) +
√

(M(t, τ) − P(t, τ))2 + 4|S (t, τ)|2 − M(t, τ) − P(t, τ). (20)

The results of numerical calculations of entanglement parameters (16) and (20) are shown in Figs. 3-6. The curves were obtained
under the assumption that τ = t/2 as in [3].

In numerical calculations we have turned our attention to the effects of the detuning as for the vacuum and the thermal field.
What is worth noting is that in most previous researches only the case of the resonance is considered to avoid the complexity.
Without loss of generality, we consider that the detuning is necessary and meaningful. In Fig. 3 and Fig. 3 we plot the negativity as
a function of a scaled time gt for entangled initial state (12) and different values of mean photon numbers and detunings. Figs.3(a)
and Fig.4(a) show that for vacuum state the presence of detuning leads to decreasing of the entanglement amplitude oscillations
and stabilization of the degree of entanglement. Fig. 3(b) shows how the mean photon number influences the entanglement
evolution for entangled initial atomic state (12). One can see that with the increase of the mean photon number the negativity
decreases, but the evolution periodicity of the entanglement does not change. One can see also from Fig. 3(b) and Fig. 4(b)
that for the thermal cavity field and small detunings the effect of sudden death and birth of entanglement takes place and that for
large detuning such effect vanishes. Figs 3(b) and Fig.4(b) show also that the entanglement increases as the detuning increases,
meanwhile the oscillation of the negativity becomes faster and faster. Fig. 5 show the entanglement behavior for independent
atoms, first of which is initially prepared in excited and the second is prepared in the ground state. Note that such initial atomic
state has been used in S. Haroche et al. experiment [3]. For this initial atomic state the detuning reduces the maximum degree
of entanglement both for the vacuum and the thermal field. In Fig. 6 we plot the negativity as a function of a scaled time gt for
entangled initial state (12) and different values of mean photon numbers and detunings. The results for entanglement in this case
is similar to that for entangled initial state (12). One can see that for vacuum state the presence of detuning leads to decreasing of
the entanglement amplitude oscillations and stabilization of the degree of entanglement. For thermal fields and small detuning the
sudden death of entanglement also takes place. For this cavity state the entanglement increases as the detuning increases as for the
first type of Bell atomic state (12).
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(a) (b)

Fig. 3. The negativity as a function of a scaled time gt for the model with δ = 0 (solid), δ = 1 (dashed) and δ = 5 (dotted). The mean photon
number n̄ = 0 (a) and n̄ = 0.5 (b). The initial atomic state |Ψ(0)〉A1A2 = (1/

√
2(|+,−〉 + |−,+〉).

(a) (b)

Fig. 4. The negativity as a function of a scaled time gt for the model with δ = 7 (solid) and δ = 15 (dashed). The mean photon number n̄ = 0 (a)
and n̄ = 2 (b). The initial atomic state |Ψ(0)〉A1A2 = (1/

√
2(|+,−〉 + |−,+〉).

(a) (b)

Fig. 5. The negativity as a function of a scaled time gt for the model with δ = 0 (solid), δ = 1 (dashed) and δ = 5 (dotted). The mean photon
number n̄ = 0 (a) and n̄ = 0.5 (b). The initial atomic state |Ψ(0)〉A1A2 = |+,−〉.

5. Conclusion

We have used negativity to study the entanglement for the system of two initially separable or entangled two-level atom
successively passing a vacuum or thermal cavity of one atom maser taking into account the detuning and initial atomic coherence.
We have derived the exact expressions for the reduced atomic density matrixes and calculated the analytical negativity expressions
for three considered model. We have investigated the entanglement for different model parameters turning our attention to the role
of detuning, thermal photon, Stark shift and initial atomic coherence or atomic quantum correlations in entanglement behavior.
The all these results show that the atom-atom entanglement can be controlled by changing the system parameters, such as the mean
photon numbers of thermal field, detuning, Stark shift and the degree of initial atomic entanglement or quantum correlations. We
have restricted ourselves to the investigation of atom-atom entanglement. The atom-field entanglement for two atoms interacting
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(a) (b)

Fig. 6. The negativity as a function of a scaled time gt for the model with δ = 0 (solid), δ = 1 (dashed) and δ = 5 (dotted). The mean photon
number n̄ = 0 (a) and n̄ = 0.5 (b). The initial atomic state |Ψ(0)〉A1A2 = (1/

√
2(|+,+〉 + |−,−〉).

with cavity field have also been discussed intensively both experimentally and theoretically (see references in [17]-[19]).
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