IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

Эффекты Холла высокого порядка в узком фокусе гибридных векторных пучков

В.В. Котляр^{1,2} ¹Институт систем обработки изображений - филиал ФНИЦ «Кристаллография и фотоника» РАН; ²Самарский национальный исследовательский университет им. академика С.П. Королева Samara, Russia kotlyar@ipsiras.ru С.С. Стафеев^{1,2} ¹Институт систем обработки изображений - филиал ФНИЦ «Кристаллография и фотоника» РАН; ²Самарский национальный исследовательский университет им. академика С.П. Королева Samara, Russia sergey.stafeev@gmail.com

Аннотация — В данной работе орбитальные и спиновые эффекты Холла высокого порядка, возникающие в остром фокусе лазерного излучения, теоретически исследуются с помощью формализма Ричардса-Вольфа.

Ключевые слова — метод Ричардса-Вольфа, эффект Холла, цилиндрический вихревой пучок, оптический вихрь, спин-орбитальная конверсия, спиновый угловой момент, орбитальный угловой момент

1. Введение

Эффект Холла в оптике и фотонике известен с 2004 года [1]. В работах [2,3] разработана теория эффекта Холла для света. В [4, 5] эффект Холла в оптике экспериментально обнаружен. Имеются несколько обзоров по эффекту Холла в фотонике [6,7]. В данной работе с помощью метода Ричардса-Вольфа [8] теоретически и численно показано, что в остром фокусе вихревого безвихревого пучка, который представляет собой суперпозицию пучков с азимутальной поляризацией *l*-го и нулевого порядков, имеют место спиновый и орбитальный эффекты Холла высокого порядка.

2. ТЕОРИЯ

Пусть начальное световое поле имеет вектор Джонса вида:

$$\mathbf{E} = A(\vartheta) \begin{pmatrix} -\sin(l\phi) \\ \cos(l\phi) + i\alpha \end{pmatrix} =$$
$$= A(\vartheta) \left[\begin{pmatrix} -\sin(l\phi) \\ \cos(l\phi) \end{pmatrix} + i\alpha \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right], \tag{1}$$
$$\operatorname{Im} \alpha = 0.$$

где $A(\vartheta)$ - произвольная функция описывающая начальную амплитуду с радиальной симметрией, (r, ϕ) - полярные координаты в начальной плоскости, α - действительное число.

Из (11) видно, что начальное поле является осевой суперпозицией светового поля с азимутальной поляризацией *l*-го порядка [9] и линейной поляризацией вдоль оси у. Далее с помощь формализма Ричардса-Вольфа [8] можно получить проекции векторов напряженности электрического и магнитного полей в остром фокусе апланатической системы для начального поля (11):

Е.С. Козлова^{1,2} ¹Институт систем обработки изображений - филиал ФНИЦ «Кристаллография и фотоника» РАН; ²Самарский национальный исследовательский университет им. академика С.П. Королева Samara, Russia kozlova.elena.s@gmail.com

$$\begin{cases} E_x = i^{l+1} \left\{ I_{0,l} \sin(l\phi) + I_{2,l-2} \sin([l-2]\phi) \right\} + \\ +\alpha I_{2,2} \sin(2\phi), \\ E_y = -i^{l+1} \left\{ I_{0,l} \cos(l\phi) - I_{2,l-2} \cos([l-2]\phi) \right\} + \\ +\alpha \left\{ I_{0,0} - I_{2,2} \cos(2\phi) \right\}, \\ E_z = -2i^l I_{1,l-1} \sin([l-1]\phi) - 2i\alpha I_{1,1} \sin(\phi), \\ H_x = i^{l+1} \left\{ I_{0,l} \cos(l\phi) + I_{2,l-2} \cos([l-2]\phi) \right\} - \\ -\alpha \left\{ I_{0,0} + I_{2,2} \cos(2\phi) \right\}, \\ H_y = i^{l+1} \left\{ I_{0,m} \sin(l\phi) - I_{2,m-2} \sin([l-2]\phi) \right\} - \\ -\alpha I_{2,2} \sin(2\phi), \\ H_z = -2i^l I_{1,l-1} \cos([l-1]\phi) + 2i\alpha I_{1,1} \cos(\phi). \end{cases}$$

$$I_{v,\mu} = \left(\frac{4\pi f}{\lambda} \right) \int_{0}^{\theta_0} \cos^{3-\nu} \left(\frac{\theta}{2} \right) \sin^{\nu+1} \left(\frac{\theta}{2} \right) \times \\ \times \cos^{1/2} \left(\theta \right) e^{ikz \cos\theta} A(\theta) J_{\mu}(x) d\theta, \end{cases}$$
(2)

где, λ - длина волны, f - фокусное расстояние, NA = sin ϑ_0 - числовая апертура, $J_{\mu}(x)$ - функция Бесселя первого рода и μ -го порядка, $x = k_r \sin \vartheta$, (r, ϕ, z) полярные координаты, $\xi_{\pm} = (1 \pm \delta)/2$, k - волновое число. Вектор плотности спина или вектор спинового углового момента определяется выражением:

$$\mathbf{S} = \frac{\mathrm{Im} \left(\mathbf{E}^* \times \mathbf{E} \right)}{16\pi\omega},\tag{4}$$

где ω - угловая частота. Далее константа 1/(16 $\pi\omega$) была опущена. Из (4) видно, что продольная компонента СУМ (без учета константы) совпадает с ненормированной третьей компонентой вектора Стокса s_3 :

$$s_3 = S_z = 2 \operatorname{Im} \left(E_x^* E_y \right).$$
(5)

Найдем осевую проекцию вектора СУМ (5) в фокусе для поля (2), получим:

IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

$$S_{z} = \begin{cases} 2\alpha (-1)^{p} \left\{ \sin (l\phi) (I_{0,0}I_{0,l} - I_{2,2}I_{2,l-2}) + \\ +\sin ([l-2]\phi) (I_{0,0}I_{2,l-2} - I_{2,2}I_{0,l}) \right\}, \\ l = 2p; \\ 0, \ l = 2p + 1, \ p = 0, 1, 2, \dots \end{cases}$$
(6)

Из (6) видно, что продольная проекция СУМ в фокусе поля (1) отлична от нуля только для четных номеров *l*, если действительный параметр *a* отличен от нуля. На окружности некоторого радиуса r с центром на оптической оси выражения в круглых скобках в (6) будут иметь постоянное значение, так как все функции *І*_{*µ,v*} зависят только от радиальной переменной *г*. Поэтому при обходе по этой окружности проекция СУМ будет менять знак 2l раз. То есть в плоскости фокуса будут иметь место 2*l* локальных областей, в которых эллиптическая (или круговая) поляризация меняет направление вращения. В тех областях, где $S_z > 0$ будет правая круговая поляризация, а там, где S_z < 0 – левая. Таким образом, в фокусе поля (1) при четном l разделяются области с правой и левой эллиптической или круговой поляризацией, что является проявлением спинового эффекта Холла *l*-го порядка.

Покажем далее, что в фокусе поля (1) имеет место также орбитальный эффект Холла *l*-го порядка. Для этого с помощью проекций векторов напряженности электрического и магнитного полей (2) рассчитаем поперечные проекции вектора Пойнтинга:

$$\mathbf{P} = \frac{c \operatorname{Re}\left(\mathbf{E}^* \times \mathbf{H}\right)}{2\pi},\tag{7}$$

где Е и Н – вектора напряженности электрического и магнитного полей, * – знак комплексного сопряжения, \times – векторное умножение, *c* – скорость света в вакууме. В дальнейшем постоянную *c*/(2 π) будем игнорировать. Подставив (2) в (7), получим поперечные проекции вектора потока энергии:

$$P_{x} = \begin{cases} 2\alpha \left(-1\right)^{p} \left\{ \cos\left(\left[l-1\right]\phi\right) \times \right. \\ \times \left(I_{1,1}I_{2,l-2} - I_{0,0}I_{1,l-1}\right) + \\ + \cos\left(\left[l+1\right]\phi\right) \times \\ \times \left(I_{2,2}I_{1,l-1} - I_{1,1}I_{0,l}\right) \right], \quad l = 2p; \\ 0, \quad l = 2p+1, \quad p = 0, 1, 2, 3, \dots \end{cases}$$

$$P_{y} = \begin{cases} 2\alpha \left(-1\right)^{p} \left[-\sin\left(\left[l-1\right]\phi\right) \times \\ \times \left(I_{1,1}I_{2,l-2} - I_{0,0}I_{1,l-1}\right) + \\ + \sin\left(\left[l+1\right]\phi\right) \times \\ \times \left(I_{2,2}I_{1,l-1} - I_{1,1}I_{0,l}\right) \right], \quad l = 2p, \\ 0, \quad l = 2p+1, \quad p = 0, 1, 2, 3, \dots \end{cases}$$

Из (8) следует, что при обходе по окружности некоторого радиуса с центром на оптической оси, когда выражения в круглых скобках постоянные, обе проекции вектора Пойнтинга меняют знак 2(l+1) раза. Это означает, что в фокусе на определенной окружности с центром на оптической оси будет лежать центры 2lлокальных субволновых областей, в которых поперечный поток энергии будет вращаться по замкнутой траектории. Причем в соседних областях вращение будет направлено в разные стороны (по часовой и против часовой стрелки). Таким образом, мы показали, что при острой фокусировке начального поля (1) в плоскости фокуса разделяются поперечные потоки энергии, вращающиеся в разные стороны. То есть имеет место орбитальный эффект Холла 2*l*-го порядка.

3. Заключение

В работе методом Ричардса-Вольфа, описывающим поведение электромагнитного излучения в остром фокусе, показано, что в плоскости фокуса имеет место спиновый и орбитальный эффекты Холла высокого порядка. Показано, что при острой фокусировке суперпозиции цилиндрического векторного пучка *l*-го порядка и нулевого порядка в плоскости острого фокуса формируются 21 субволновых областей, у которых в соседних областях направление продольной проекции углового орбитального момента (ОУМ) противоположенное. То есть фотоны, попадающие в соседние области в фокусе, имеют осевую проекцию ОУМ разного знака – это орбитальный эффект Холла 2lго порядка.

Благодарности

Работа частично финансировалась Российским научным фондом по гранту № 22-12-00137 (в части «Теория»), а также Минобрнауки России в рамках государственного контракта с НИЦ «Кристаллография и фотоника» РАН по договору 007-ГЗ/ЧЗЗ6З/26 (в части «Введение»).

ЛИТЕРАТУРА

- Onoda, M. Hall effect of light / M. Onoda, S. Marakami, N. Nagaosa // Phys. Rev. Lett. – 2004. – Vol. 93. – P. 083901.
- [2] Bliokh, K.Y. Topological spin transport of photons: The optical Magnus effect and Berry phase / K.Y. Bliokh, Y.P. Bliokh // Phus. Lett. A. - 2004. - Vol. 333(3-4). - P. 181-186.
- [3] Bliokh, K.Y. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet / K.Y. Bliokh, Y.P. Bliokh // Phys. Rev. Lett. – 2006. – Vol. 96. – P. 073903.
- [4] Kavokin, A. Optical spin Hall effect / A. Kavokin, G. Malpuech, M. Glazov // Phys. Rev. Lett. 2005. Vol. 95. P. 136601.
- [5] Hosten, O. Observation of the spin Hall effect of light via weak measurements / O. Hosten, P. Kwiat // Science. – 2008. – Vol. 319(5864). – P. 787–790.
- [6] Ling, X. Recent advances in the spin Hall effect of light / X. Ling, X. Zhou, K. Huang, Y. Liu, C. Qiu, H. Luo, S. Wen // Pep. Prog. Phys. – 2017. – Vol. 80(6). – P. 066401.
- [7] Liu, S. Photonics spin Hall effect: Fundamentals and emergent applications / S. Liu, S. Chen, S. Wen, H. Luo // Opto-Electr. Sci. – 2022. – Vol. 1(7). – P. 220007.
- (8) [8] Richards, B. Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System / E. Wolf // Proc. R. Soc. A. Math. Phys. Eng. Sci. – 1959. – Vol. 253(1274). – P. 358– 379.
 - [9] Kotlyar, V.V. Tightly focusing vector beams containing V-point polarization singularities / V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev, A.G. Nalimov, S. Rasouli // Opt. Laser Technol. – 2022. – Vol. 145. – P. 107479.