Эффект Холла вблизи острого фокуса цилиндрических векторных пучков отрицательного порядка

В.В. Котляр ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН Самара, Россия kotlyar@ipsiras.ru

С.С. Стафеев ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН Самара, Россия sergey.stafeev@gmail.com

Аннотация—В данной работе рассмотрена острая фокусировка векторных пучков отрицательных порядков. Теоретически показано, что только для первого порядка пучка продольная компонента спинового углового момента нулевая вблизи плоскости фокуса.

Ключевые слова — острая фокусировка, формулы Ричардса-Вольфа, эффект Холла, векторный пучок.

1. Введение

Цилиндрические векторные пучки (в том числе в условиях острой фокусировки) в настоящее время активно изучаются [1]. Однако в основном внимание исследователей было сосредоточено на изучении интенсивности и лишь сравнительно недавно стали активно изучаться другие характеристики: поток энергии [2] и поляризация [3].

2. ФОРМУЛЫ РИЧАРДСА-ВОЛЬФА

В данной работе для теоретических и численных исследований использовалась формула Ричардса-Вольфа [4]:

$$\mathbf{U}(\rho, \psi, z) = -\frac{if}{\lambda} \int_{0}^{\theta_{0} 2\pi} B(\theta, \varphi) T(\theta) \mathbf{P}(\theta, \varphi) \times$$

$$\times \exp\left\{ik \left[\rho \sin \theta \cos(\varphi - \psi) + z \cos \theta\right]\right\} \sin \theta d\theta d\varphi,$$
(1)

где $U(\rho, \psi, z)$ — напряжённость электрического или магнитного поля, $B(\theta, \phi)$ — амплитуда электрического или магнитного поля в выходном зрачке широкоапертурной оптической системы (θ — полярный угол, ϕ — азимутальный), $T(\theta)$ — функция аподизации линзы, f — фокусное расстояние, $k = 2\pi/\lambda$ — волновое число, λ — длина волны (в моделировании считалась равной 532 нм), θ_0 — максимальный полярный угол, определяемый числовой апертурой линзы (NA = sin θ_0), **Р**(θ, ϕ) — вектор поляризации, для напряжённости электрического и магнитного полей имеющий вид: А.А. Ковалев ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН Самара, Россия alanko@ipsiras.ru

В.Д. Зайцев Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия zaicev-vlad@yandex.ru

$$\mathbf{P}(\theta, \varphi) = \begin{bmatrix} 1 + \cos^{2} \varphi(\cos \theta - 1) \\ \sin \varphi \cos \varphi(\cos \theta - 1) \\ -\sin \theta \cos \varphi \end{bmatrix} a(\theta, \varphi) +$$

$$+ \begin{bmatrix} \sin \varphi \cos \varphi(\cos \theta - 1) \\ 1 + \sin^{2} \varphi(\cos \theta - 1) \\ -\sin \theta \sin \varphi \end{bmatrix} b(\theta, \varphi),$$
(2)

где $a(\theta, \phi)$ и $b(\theta, \phi)$ — функции, описывающие состояние поляризации *x*- и *y*-компонент напряжённостей фокусируемого пучка. Для напряженности электрического поля рассматриваемых векторных пучков:

$$E_n(\phi) = \begin{pmatrix} a(\theta, \phi) \\ b(\theta, \phi) \end{pmatrix} = \begin{pmatrix} \cos n\phi \\ \sin n\phi \end{pmatrix},$$
 (3)

а для напряженности магнитного поля:

$$H_n(\phi) = \begin{pmatrix} a(\theta, \phi) \\ b(\theta, \phi) \end{pmatrix} = \begin{pmatrix} -\sin n\phi \\ \cos n\phi \end{pmatrix}.$$
 (4)

Подставив уравнения (3) и (4) в (1), можно показать, что:

$$E_{x}(r, \varphi) = i^{n-1} \Big[\cos(n\varphi) I_{0,n} + \cos((n-2)\varphi) I_{2,n-2} \Big],$$

$$E_{y}(r, \varphi) = i^{n-1} \Big[\sin(n\varphi) I_{0,n} - \sin((n-2)\varphi) I_{2,n-2} \Big],$$

$$E_{z}(r, \varphi) = 2i^{n} \cos((n-1)\varphi) I_{1,n-1},$$

$$H_{x}(r, \varphi) = -i^{n-1} \Big[\sin(n\varphi) I_{0,n} + \sin((n-2)\varphi) I_{2,n-2} \Big],$$

$$H_{y}(r, \varphi) = -i^{n-1} \Big[-\cos(n\varphi) I_{0,n} + \cos((n-2)\varphi) I_{2,n-2} \Big],$$

$$H_{z}(r, \varphi) = -2i^{n} \sin((n-1)\varphi) I_{1,n-1}.$$
(5)

IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

$$I_{\nu,\mu} = \left(\frac{4\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \times$$

$$\times T(\theta) A(\theta) e^{ikz\cos\theta} J_{\mu}(x) d\theta,$$
(6)

где, $x=kr\sin\theta$, $J_{\mu}(x)$ — функция Бесселя первого рода. Рассмотрим далее поведение продольной составляющей спинового углового момента (СУМ):

$$SAM_z = s_3 = 2 \operatorname{Im}(E_x^* E_y).$$
 (7)

Можно показать, что непосредственно в фокусной плоскости (при *z*=0) для любого порядка рассматриваемых пучков:

$$SAM_z\Big|_{z=0} = 0.$$
 (8)

На некотором расстоянии от плоскости фокуса можно считать, что $e^{ik_z\cos\theta} \approx 1 + ik_z\cos\theta$, тогда уравнение (6) можно представить в виде

$$I_{\nu,\mu} = Ir_{\nu,\mu} + ikz Ii_{\nu,\mu} \,, \tag{9}$$

где

$$Ir_{\nu,\mu} = \left(\frac{\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \times (10)$$
$$\times T(\theta) A(\theta) J_{\mu}(x) d\theta,$$

$$h_{\nu,\mu} = \left(\frac{\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \times$$

$$\times T(\theta) A(\theta) \cos \theta J_{\mu}(x) d\theta.$$
(11)

Тогда

$$SAM_{z} = 2kz \sin\left[\left(2m-2\right)\varphi\right]\left[Ir_{0,m}Ii_{2,m-2} - Ir_{2,m-2}Ii_{0,m}\right]$$
(12)

Из уравнения (12) видно, что только для единичного порядка пучка продольная компонента СУМ будет нулевой. Для всех остальных порядков будут возникать зоны с ненулевым продольным СУМ, при этом знаки в соседних областях будут противоположны. Для отрицательных порядков векторного пучка такие области будут возникать чаще.

3. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

На рис. 1 показаны результаты численного моделирования острой фокусировки векторного пучка (3) порядка n = -2 на расстоянии $z = \lambda$ после плоскости фокуса.

Из рис. 1 видно, что вблизи фокуса распределение интенсивности имеет вид неравномерного кольца – вдоль кольца расположено шесть пиков интенсивности. Напомним, что для положительного порядка пучка n=2, наблюдается два пика интенсивности [5,6]. Из рис. 16 видно, что вблизи фокуса формируется шесть пар областей с ненулевым продольным спиновым угловым моментом и чередующимся знаком (направлением вращения круговой поляризации).

Рис. 1. Распределение интенсивности (а) и продольной составляющей спинового углового момента (б) для пучка порядка *n*=-2 на расстоянии *z* = λ после плоскости фокуса

4. Заключение

В данной работе рассмотрена острая фокусировка векторных пучков отрицательных порядков. Теоретически показано, что только для первого порядка пучка продольная компонента спинового углового момента нулевая вблизи плоскости фокуса.

Благодарности

Работа выполнена при поддержке Российского научного фонда (грант 22-12-00137).

ЛИТЕРАТУРА

- Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Q. Zhan // Adv. Opt. Photonics – 2009. – Vol. 1(1). – P. 1–57.
- [2] Kotlyar, V.V. Energy backflow in the focus of a light beam with phase or polarization singularity / V.V. Kotlyar, S.S. Stafeev, A.G. Nalimov // Phys. Rev. A. - 2019. - Vol. 99(3). - P. 033840.
- [3] Stafeev, S.S. Circular Polarization near the Tight Focus of Linearly Polarized Light / S.S. Stafeev, A.G. Nalimov, A.A. Kovalev, V.D. Zaitsev, V.V. Kotlyar // Photonics. – 2022. – Vol. 9(3). – P. 196.
- [4] Richards, B. Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System / B. Richards, E. Wolf // Proc. R. Soc. A Math. Phys. Eng. Sci. – 1959. – Vol. 253(1274). – P. 358–379.
- [5] Huang, K. Vector-vortex Bessel–Gauss beams and their tightly focusing properties / K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, Y. P. Li // Opt. Lett. – 2011. – Vol. 36(6). – P. 888–890.
- [6] Guo, H. Control of the multifocal properties of composite vector beams in tightly focusing systems / H. Guo, G. Sui, X. Weng, X. Dong, Q. Hu, S. Zhuang // Opt. Express – 2011. – Vol. 19(24). – P. 24067–24077.