IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

Эффект Холла для пучков с круговой поляризацией

В.Д. Зайцев Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия zaicev-vlad@yandex.ru С.С. Стафеев Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия sergey.stafeev@gmail.com

Аннотация — Используя уравнения Ричардса-Вольфа, мы теоретически рассмотрели фокусировку света с круговой поляризацией плоскими дифракционными линзами. Мы обнаружили, что в фокусе циркулярно поляризованного лазерного пучка наблюдаются круги разного радиуса с центром на оптической оси, где векторы поляризации вращаются в противоположных направлениях. Этот эффект можно назвать радиальным спиновым эффектом Холла, так как свет с разным знаком спина в фокусе имеет место на разных световых кольцах с одним центром на оптической оси.

Ключевые слова— эффект Холла круговая поляризация, уравнения Ричардса–Вольфа, острая фокусировка света.

1. Введение

Острая фокусировка обращает на себя внимание исследователей ввиду различных эффектов, которые не проявляются (либо проявляются незначительно) при фокусировке света линзами с малыми числовыми апертурами. Например, в фокусе можно наблюдать сложные картины поперечных потоков энергии [1–4], конверсию поляризации [5–7], а при рассмотрении интенсивности в фокусе можно наблюдать фокусные пятна различной формы [8–10].

В данной работе, применяя подход Ричардса-Вольфа, теоретически рассмотрена фокусировка света с круговой поляризацией плоскими дифракционными линзами. При острой фокусировке света были обнаружены круги разного радиуса с центром на оптической оси, где векторы поляризации вращаются в противоположных направлениях – так называемый эффект Холла.

2. Моделирование

Поле вблизи острого фокуса может быть описано с помощью интеграла Ричардса-Вольфа [5]:

$$\mathbf{U}(\rho, \psi, z) = -\frac{if}{\lambda} \int_{0}^{\theta_{0}} \int_{0}^{2\pi} B(\theta, \varphi) T(\theta) \mathbf{P}(\theta, \varphi) \times$$

$$\times \exp\left\{ik\left[\rho\sin\theta\cos\left(\varphi - \psi\right) + z\cos\theta\right]\right\}\sin\theta\,d\theta\,d\varphi,$$
(1)

где $U(\rho, \psi, z)$ — напряжённость электрического или магнитного поля, $B(\theta, \phi)$ — амплитуда электрического или магнитного поля в выходном зрачке широкоапертурной оптической системы (θ — полярный угол, ϕ — азимутальный), $T(\theta)$ — функция аподизации линзы, f — фокусное расстояние, $k = 2\pi/\lambda$ — волновое число, λ — длина волны (в моделировании считалась равной 633 нм), θ_0 — максимальный полярный угол, определяемый числовой апертурой линзы (NA = sin θ_0), $P(\theta, \phi)$ — вектор поляризации, для напряжённости электрического и магнитного полей имеющий вид: В.В. Котляр Институт систем обработки изображений – филиал Федерального научно-исследовательского центра «Кристаллография и фотоника» РАН Самара, Россия kotlyar@ipsiras.ru

$$\mathbf{P}(\theta, \varphi) = \begin{bmatrix} 1 + \cos^2 \varphi(\cos \theta - 1) \\ \sin \varphi \cos \varphi(\cos \theta - 1) \\ -\sin \theta \cos \varphi \end{bmatrix} a(\theta, \varphi) +$$

$$+ \begin{bmatrix} \sin \varphi \cos \varphi(\cos \theta - 1) \\ 1 + \sin^2 \varphi(\cos \theta - 1) \\ -\sin \theta \sin \varphi \end{bmatrix} b(\theta, \varphi),$$
(2)

где $a(\theta, \phi)$ и $b(\theta, \phi)$ — функции, описывающие состояние поляризации *x*- и *y*-компонент напряжённостей фокусируемого пучка.

Так как интенсивность и осевой поток энергии для света с левой и правой круговой поляризацией одинаковы, то будем рассматривать только одну правую поляризацию, вектор Джонса для которой имеет вид:

$$\mathbf{E}_{R} = \begin{pmatrix} a(\theta, \varphi) \\ b(\theta, \varphi) \end{pmatrix} = \frac{A(\theta)}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix},$$
(3)

где $A(\theta)$ – начальная амплитуда поля, зависящая только от полярного угла.

Проекции вектора напряженности электрического поля вблизи фокуса для начального поля (3) имеют вид:

$$E_{x,R} = \frac{-i}{\sqrt{2}} (I_{0,0} + e^{2i\phi} I_{2,2}),$$

$$E_{y,R} = \frac{1}{\sqrt{2}} (I_{0,0} - e^{2i\phi} I_{2,2}),$$

$$E_{z,R} = -\sqrt{2} e^{i\phi} I_{1,1}.$$
(4)

где

$$I_{\nu,\mu} = \left(\frac{\pi f}{\lambda}\right)_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \times T(\theta)A(\theta)e^{ik_{z}\cos\theta}J_{\mu}(x)d\theta,$$
(5)

где, $x = kr \sin \theta$, $J_{\mu}(x)$ — функция Бесселя первого рода.

Из уравнений (4) видно, что отдельные поперечные составляющие интенсивности ненулевые на оси и несимметричны относительно азимутального угла φ , в то время как продольная составляющая интенсивности имеет вид симметричного кольца с нулем при r = 0.

Из (4) можно получить распределение интенсивности в фокусе для начального поля (3):

$$I_R(r, z=0) = I_{0,0}^2 + I_{2,2}^2 + 2I_{1,1}^2.$$
(6)

Из (6) видно, что фокусное пятно для света с круговой поляризацией (3) имеет круглую форму, так 013622 IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

как распределение интенсивности (6) зависит только от радиальной переменной *r*. Из уравнения (6) видно, что такой же подход может быть применен и для круговой поляризации.

Рассмотрим поведение поляризации в окрестности острого фокуса для этого случая. Непосредственно в плоскости фокуса при z = 0 поляризация остается линейной. Состояние поляризации можно охарактеризовать вектором Стокса или спиновым угловым моментом. Наличие круговой поляризации в поперечном сечении пучка показывает третья компонента вектора Стокса s_3 или продольная компонента SAM_z спинового углового момента (СУМ), они равны друг другу и равны:

$$SAM_z = s_3 = 2\operatorname{Im}(E_x^*E_y).$$
⁽⁷⁾

С помощью формул (4) можно показать, что непосредственно в фокусе:

$$SAM_z = I_{0,0}^2 - I_{2,2}^2.$$
(8)

Из уравнения (8) видно, что есть области, где продольная компонента спинового углового момента Вблизи оптической меняет знак. оси SAM_z положительная, так как $I_{0,0}^2 > I_{2,2}^2$. А на окружности некоторого радиуса, когда выполняется условие $I_{0,0}^2 < I_{2,2}^2$ продольная компонента вектора плотности спина SAM_z становится отрицательной. Таким образом, в плоскости фокуса должна наблюдаться смена направления вращения круговой поляризации: вблизи оптической оси остается начальная правая круговая поляризация (3), а на некотором удалении от оптической оси появляется световое кольцо с левой круговой поляризацией. Этот эффект можно назвать радиальным спиновым эффектом Холла, так как свет с разным знаком спина в фокусе имеет место на разных световых кольцах с одним центром на оптической оси.

Отметим также, что на некотором расстоянии от плоскости фокуса можно считать, что $e^{ik_z\cos\theta} \approx 1 + ik_z\cos\theta$, тогда уравнение (5) можно представить в виде

$$I_{\nu,\mu} = Ir_{\nu,\mu} + ikz Ii_{\nu,\mu} \,, \tag{9}$$

где

$$Ir_{\nu,\mu} = \left(\frac{\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1} \left(\frac{\theta}{2}\right) \cos^{3-\nu} \left(\frac{\theta}{2}\right) \times T(\theta) A(\theta) J_{\mu}(x) d\theta,$$
(10)

$$I_{\nu,\mu} = \left(\frac{\pi f}{\lambda}\right)_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \times T(\theta)A(\theta)\cos\theta J_{\mu}(x)d\theta.$$
(11)

Тогда, вместо (8) можно записать:

$$SAM_{z} = (Ir_{0,0}^{2} - Ir_{2,2}^{2}) + (kz)^{2} \left(Ii_{0,0}^{2} - Ii_{2,2}^{2} \right).$$
(12)

Из уравнения (12) видно, что до фокуса и после фокуса картина СУМ одинаковая, и разница от распределения в фокусе в том, что первое световое кольцо с отрицательным СУМ ($SAM_z < 0$) будет иметь больший радиус, чем в фокусе.

3. Заключение

Используя уравнения Ричардса-Вольфа, теоретически рассмотрена фокусировка света с круговой поляризацией плоскими дифракционными линзами. Показано, что в фокусе циркулярно поляризованного оптического пучка образуются круговые области разного радиуса с центром на оптической оси с чередующимися направлениями вращения вектора поляризации (по часовой стрелке и против часовой стрелки). Такое зависящее от радиуса разделение противоположно направленных «спинов» является проявлением радиального спинового эффекта Холла в фокусе. Потенциальные области применения следующие: фокус с плоской вершиной может найти применение в микроскопии для получения однородного поля зрения, тогда как эффект Холла с радиальным вращением можно использовать для установки поглощающих микрочастиц в противоположное положение. одноручное вращение за счет частичной передачи им спинового углового момента света.

Благодарности

Работа выполнена при поддержке Российского научного фонда, грант № 22-22-00265.

ЛИТЕРАТУРА

- Kotlyar, V.V. Tight focusing with a binary microaxicon / V.V. Kotlyar, S.S. Stafeev, L. O'Faolain // Optics Letters – 2011. – Vol. 36(16). – P. 3100-3102
- [2] Volotovskiy, S.G. Influence of Vortex Transmission Phase Function on Intensity Distribution in the Focal Area of High-Aperture Focusing System / S.G. Volotovskiy, N.L. Kazanskiy, S. N. Khonina // Optical Memory and Neural Networks (Information Optics). – 2011. – Vol. 20(1). – P. 23-42.
- [3] Dorn, R. Sharper Focus for a Radially Polarized Light Beam / R. Dorn, S. Quabis, G. Leuchs // Phys. Rev. Lett. – 2003. – Vol. 91. – P. 233901.
- [4] Grosjean, T. Longitudinally polarized electric and magnetic optical nano-needles of ultra high lengths / T. Grosjean, I. Gauthier // Opt. Commun. – 2013. –Vol. 294. – P. 333–337.
- [5] Guan, J. Transversely polarized sub-diffraction optical needle with ultra-long depth of focus / J. Guan, J. Lin, C. Chen, Y. Ma, J. Tan, P. Jin // Opt. Commun. – 2017. – Vol. 404. – P.118–123.
- [6] Yu, Y. Engineering of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps / Y. Yu, H. Huang, M. Zhou, Q. Zhan // Opt. Commun. – 2018. – Vol. 407. – P. 398–401.
- [7] Zheng, C. Characterization of the focusing performance of axial linefocused spiral zone plates / C. Zheng, S. Su, H. Zang, Z. Ji, Y. Tian, S. Chen, K. Mu, L. Wei, Q. Fan, C. Wang, X. Zhu, C. Xie, L. Cao, E. Liang // Appl. Opt. – 2018. – Vol. 57(14). – P. 3802-3807.
- [8] Lin, J. Generation of longitudinally polarized optical chain by 4 π focusing system / J. Lin, R. Chen, P. Jin, M. Cada, Y. Ma // Opt. Commun. 2015. Vol. 340. P. 69-73.
- [9] Yu, Y. Generation of uniform three-dimensional optical chain with controllable characteristics / Y. Yu, Q. Zhan // J. Opt. – 2015. – Vol. 17(10). – 105606.
- [10] Xiaoqiang, Z. Focusing properties of cylindrical vector vortex beams / Z. Xiaoqiang, C. Ruishan, W. Anting // Opt. Commun. – 2018. – Vol. 414. – P. 10-15.