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Abstract. The problem of singularly perturbed differential systems decomposition by the
method of integral manifolds is studied and the application of the method to the problems
of kinetics is considered.

1. Introduction
The main object of our consideration is the following system of differential equations:

ẋ = f(x, y, t, ε), (1)

εẏ = g(x, y, t, ε), (2)

where x and f are vectors in Euclidean spaces Rm, y and g are vectors in Rn, t ∈ R, and ε is a small 
positive parameter.
The goals of the paper are to construct a transformation reducing (1)-(2) to the system

v̇ = ϕ(v, t, ε), εż = η(v, z, t, ε),

and to discuss some applications to the problems of enzyme kinetics.
This approach was suggested in [5] and it has been successfully used to solve a number of problems
in control theory . However, in the general case, the construction of a splitting transformation is
not a simple task. The transformation uses functions that describe slow and fast integral
manifolds. With the construction of slow integral manifolds, the situation is sufficiently studied.
After the first paper [6], in which the slow integral manifold was constructed as an asymptotic
expansion in powers of a small parameter, this approach was used by many authors (see, for
example, the book [4] and references therein).

2. Splitting transformation
Our main goal is the constructing of the transformation

x = v + εH(v, z, t, ε), (3)

y = z + h(x, t, ε), (4)

which reduces the original system (1), (2) to the form

v̇ = ϕ(v, t, ε), (5)

εż = η(v, z, t, ε). (6)
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Let (x(t), y(t)) be a solution to (1), (2) with an initial condition x(t0) = x0, y(t0) = y0. 
There exists a solution (v(t), z(t)) of (5), (6) with the initial condition v(t0) = v0, z(t0) = z0, 
such that

x(t) = v(t) + εH(v(t), z(t), t, ε), y(t) = z(t) + h(x(t), t, ε). (7)

It is sufficient to show that (7) takes place under t = t0. Setting t = t0 in (7) we obtain

x0 = v0 + εH(v0, z0, t0, ε), y0 = z0 + h(x0, t0, ε),

and, therefore, z0 = y0 − h(x0, t0, ε).
For v0 we have the equation

v0 = x0 −H(v0, z0, t0, ε) = V (v0), (8)

which has the unique solution for any x0 ∈ Rm and fixed z0 and t0, where

‖z0‖ = ‖y0 − h(x0, t0, ε)‖ ≤ ρ2

for some ρ2.
If some natural assumptions are hold, then there exist such numbers ε2 and ρ2 that for all ε ∈ (0, 
ε2] any solution x = x(t, ε), y = y(t, ε) of system (1), (2) with the initial condition x(t0, ε) = x0, 
y(t0, ε) = y0, where ‖y0 − h(x0, t0, ε)‖ ≤ ρ2, can be represented in form of (7). This means that in 
the ρ2-neighbourhood of the slow integral manifold y = h(x, t, ε) of system (1), (2) can be reduced 
to the form (5), (6) by the splitting transformation (3), (4). Thus, system (1), (2) was split into 
two subsystems, the first of which is independent and contains a small parameter in a regular 
manner. Note that the initial value v0 can be calculated from (8) in a form of an asymptotic 
expansion:

v0 = v00 + εv01 + ε2v02 + . . . .

For example, v00 = z0, v01 = −H(x0, z00, t0, 0), where z00 = y0 − h(x0, t0).
Note that there exist positive numbers a and b such that

(9)

‖H(v, z, t, ε)‖ ≤ a‖z‖,

‖H(v, z, t, ε) − H(v, z̄ , t, ε)‖ ≤ b‖z − z̄‖,
‖H(v, z, t, ε) − H(v̄, z, t, ε)‖ ≤ b‖z‖‖v − v̄‖.

It is important to underline that there exists number K, K > 1 such that

‖z(t, ε)‖ ≤ K exp(−γt/ε)‖z0‖, t ≥ 0. (10)

This means: the solution x = x(t, ε), y = y(t, ε) of the original system (1)-(2) that satisfied the 
initial condition x(0, ε) = x0, y(t0, ε) = y0 can be represented as

x(t, ε) = v(t, ε) + εϕ1(t, ε),
y(t, ε) = ȳ(t, ε) + ϕ2(t, ε).

(11)

Thus, this solution is represented as a sum of solution which lies on the slow integral manifold,
i.e.

x = x(t, ε) = v(t, ε), y(t, ε) = h(v(t, ε), t, ε),

and exponentially decreasing functions

εϕ1(t, ε) = εH(v(t, ε), z(t, ε), t, ε),

ϕ2(t, ε) = z(t, ε) + h(v(t, ε) + εH(v(t, ε), z(t, ε), t, ε), t, ε)− h(v(t, ε), t, ε).
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3. Systems that are linear with respect to fast variables
Consider the differential system

ẋ = ζ(x, t, ε) + F (x, t, ε)y, (12)

εẏ = ξ(x, t, ε) +G(x, t, ε)y, (13)

where x ∈ Rm, y ∈ Rn, t ∈ R.
Such systems are typical of enzyme kinetics [1].
We assume that the eigenvalues λi(x, t) of the matrix G(x, t, 0) have the property Reλi(x, t) ≤
−2γ < 0, in t ∈ R, x ∈ Rm, and that the matrix- and vector-functions ζ, ξ, F and G are
continuous and bounded as well as their partial derivatives with respect to the arguments
t ∈ R, x ∈ Rm, ε ∈ [0, ε0]. When these assumptions hold, the system (12)-(13) has a slow
integral manifold

y = h(x, t, ε) = h0(x, t) + εh1(x, t) + . . . .

Noting that
dy

dt
=
∂h

∂t
+
∂h

∂x
(ζ + Fh),

or using the first of (12)-(13)), the functions hi can be derived from the second of (12)-(13)

ε
∂h

∂t
+ ε

∂h

∂x
(ζ + Fh) = ξ +Gh.

Suppose that the following representations take place

F (x, t, ε) =
∑
j≥0

εjFj(x, t), G(x, t, ε) =
∑
j≥0

εjGj(x, t),

ζ(x, t, ε) =
∑
j≥0

εjζj(x, t), ξ(x, t, ε) =
∑
j≥0

εjξj(x, t).

Here, G0 = G0(x, t) plays the role of matrix B(x, t). The formulae for the coefficients of
asymptotic expansions of slow integral manifold h = h(x, t, ε) take the form

h0 = G−1
0 ξ0,

hk = G−1
0 [

∂hk−1

∂t
+

k−1∑
p=0

∂hp
∂x

(ζk−1−p +

k−1−p∑
j=0

Fjhk−p−1−j) (14)

− ξk −
k∑

j=1

Gjhk−j ], k ≥ 1.

The invariance equation for the fast integral manifold H = H(v, z, t, ε) in this case takes the form

ε
∂H

∂t
+ ε

∂H

∂v
[ζ(v, t, ε) + F (v, t, ε)h(v, t, ε)] +

∂H

∂z
[G(v + εH, t, ε)

−ε∂h
∂x

(v + εH, t, ε)F (v + εH, t, ε)]z = ζ(v + εH, t, ε)− ζ(v, t, ε)

+F (v + εH, t, ε)(z + h(v + εH, t, ε))− F (v, t, ε)h(v, t, ε).

Setting ε = 0, we obtain
∂H0

∂z
G0(v, t)z = F0(v, t)z.
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It is possible to represent H0(v, t, z) in the form H0(v, z, t) = D0(v, t)z, where matrix D0(v, t)
satisfies the equation

D0(v, t)G0(v, t) = F0(v, t),

and, therefore,
H0(v, z, t) = F0(v, t)G0

−1(v, t)z.

Neglecting terms of order o(ε), we use the transformation

(15)x = v + εH0(v, z, t), y = z + h0(x, t) + εh1(x, t)

to reduce system (12) to a nonlinear block-triangular form:

v̇ = ζ0(v, t) + F0(v, t)h0(v, t) + ε[ζ1(v, t)

+ F0(v, t)h1(x, t) + F1(v, t)h0(v, t)] +O(ε2),

εż = [G0(v, t) + ε(G1(v, t) +
∂G0

∂x
(v, t)H0(v, z, t)

− ∂h0
∂x

(v, t)F0(v, t))]z +O(ε2). (16)

4. Equations of enzyme kinetics
4.1. General equations
Consider the differential system

ẋ = ζ(x) + F (x)y,

εẏ = ξ(x) +G(x)y, (17)

where x ∈ Rm, y ∈ Rn, t ∈ R, which appears under the modelling of enzyme knetics systems
[1, 2, 3]. Let the initial value conditions are

x(0) = x0, y(0) = y0.

This system may be reduced to the form

v̇ = ζ(v) + F (v)h(v, ε), (18)

εż = [G(v + εH)− ε∂h
∂x

(v + εH)]z (19)

by the transformation
x = v + εH(v, z, ε), (20)

y = z + h(x, ε). (21)

Here,
h(x, ε) = h0(x) + εh1(x) +O(ε2), (22)

H(v, z, ε) = H0(v, z) +O(ε), (23)

where

h0(x) = −G−1(x)ξ(x), h1(x) = G−1(x)[
∂h0
∂x

(ζ(x) + F (x)h0(x))− ξ(x)−G(x)h0(x)], (24)

H0(v, z) = F (v)G−1(v)z. (25)
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Corresponding initial value conditions take the form

v(0) = v0 = x0 − εF (x0)G−1(x0)[y0 + G−1(x0)ξ(x0)] + O(ε2),

z(0) = z0 = y0 + G−1(x0)ξ(x0) − εh1(x0) + O(ε2).

Note that for dimensionless models of enzyme kinetics the initial values of slow variables are 
equal to unity and the initial values of fast variables are equal to zero, i.e. x0 = colon(1, 1, ..., 1) 
and y0 is the zero vector, y0 = 0 [2, 3]. This means that

v(0) = v0 = x0 − εF (x0)G
−2(x0)ξ(x0)] +O(ε2), (26)

z(0) = z0 = G−1(x0)ξ(x0)− εh1(x0) +O(ε2) (27)

where x0 = colon(1, 1, ..., 1).
Results of this section together with representation (7) or (11) means that the original 
dynamical model (17) of some enzyme system with the initial conditions

x(0) = x0 = colon(1, 1, ..., 1), y(0) = 0

may be reduced to the dynamical model of lower dimension

v̇ = ζ(v) + F (v)h(v, ε), v(0) = v0 = x0 − εF (x0)G
−2(x0)ξ(x0)] +O(ε2), (28)

without singular perturbation. For the original variables x and y the following presentation may
be used

x = v(t, ε), y = h(v(t, ε), ε).

It is important to emphasize that the reduced model is effectively constructed with any degree
of accuracy and reflects the behavior of the original model both qualitatively and quantitatively.

4.2. Enzyme-Substrate-Inhibitor System
We consider a enzyme–substrate reaction [2] as an example of system with two slow and two
fast variables. The reaction consists of an enzyme E with a single reaction site (many enzymes
have several such sites) for which two substrates compete and form one of two complexes. These
break down to give two products and the original enzyme. When one substrate combines with
the enzyme it means, in effect, that it is inhibiting the other substrate’s reaction with that
enzyme. The reactions can be written schematically as

S + E
k1


k−1

ES
k2→ PS + E, (29)

I + E
k3


k−3

EI
k4→ PI + E, (30)

where S and I are the two substrates, which compete for the same enzyme E, and PS and PI 
are the products of two enzyme-substrate reactions.
When two substrates are competing for the same enzyme site, the reaction system (29) and 
(30) is said to be fully competitive. In such reactions one or other of the substrates can be singled 
out for its reaction rate to be measured by an experiment (see more details in [2]). The one so 
singled out is called the substrate and the other the inhibitor. We choose the inhibitor to be I 
and its reaction to be (30).
Applying the law of mass action to (29), (30) gives the kinetic equations for the concentrations of 
the reactants. Since we shall be interested primarily in the rates of the reactions of S and I,
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we do not need the equations for the products; only the rate constants k2 and k4 in (29), (30)
are involved. Thus we need only consider the kinetic equations for the substrate, inhibitor, and
enzyme complex whose concentrations as functions of time t are denoted by

s(t) = [S], i(t) = [I], e(t) = [E],

cs(t) = [ES], ci(t) = [EI].
(31)

The kinetic equations for the concentrations for the reactions (29), (30), see [2], are

ds

dt
= −k1 s e+ k−1 cs, (32)

dcs
dt

= k1 s e− (k−1 + k2)cs, (33)

di

dt
= −k3 i e+ k−3 ci, (34)

dci
dt

= k3 i e− (k−3 + k4)ci (35)

de

dt
= −k1 s e− k3 i e+ (k−1 + k2)cs + (k−3 + k4)ci. (36)

Appropriate initial conditions for equations (32)–(36) are that there are no enzyme complexes 
initially but s, i, and e are prescribed, that is

s(0) = s0, i(0) = i0, e(0) = e0, cs(0) = ci(0) = 0. (37)

The conservation equation for the enzyme e is obtained immediately by adding (33), (35), (36)
and using the initial conditions (37) to get

d

dt
(cs + ci + e) = 0 ⇒ cs + ci + e = e0. (38)

Eliminating e from (32)–(36) by using (38) gives four equations for s, i, cs and ci. We now 
introduce nondimensional variables and parameters by

x1(τ) =
s(t)

s0
, x2(τ) =

i(t)

i0
, y1(τ) =

cs(t)

e0
, y2(τ) =

ci(t)

e0
,

τ = k1 e0 t, ε =
e0
s0
, β =

i0
s0
, γ =

k3
k1
, (39)

Ks =
k−1 + k2
k1s0

, Ki =
k−3 + k4
k3i0

, Ls =
k2
k1s0

, Li =
k4
k3i0

.

Then the four equations for s, i, cs and ci become the four dimensionless equations

dx1
dτ

= −x1 + (x1 +Ks − Ls)y1 + x1y2 = f1(x1, x2, y1, y2), (40)

dx2
dτ

= γ[−x2 + x2y1 + (x2 +Ki − Li)y2] = f2(x1, x2, y1, y2), (41)

ε
dy1
dτ

= x1 − (x1 +Ks)y1 − x1y2 = g1(x1, x2, y1, y2), (42)

ε
dy2
dτ

= βγ[x2 − x2y1 − (x2 +Ki)y2] = g2(x1, x2, y1, y2), (43)
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with initial conditions
x1(0) = x2(0) = 1, y1(0) = y2(0) = 0. (44)

We use the results of the previous section to calculate the approximate two-dimensional slow 
invariant manifold and the equation that describes the flow on this manifold with the assumption 
that 0 < ε � 1.
The degenerate system is

dx1
dτ

= −x1 + (x1 +Ks − Ls)y1 + x1y2, (45)

dx2
dτ

= γ[−x2 + x2y1 + (x2 +Ki − Li)y2], (46)

0 = x1 − (x1 +Ks)y1 − x1y2, (47)

0 = βγ[x2 − x2y1 − (x2 +Ki)y2], (48)

The last two equations give the unique solution

y1 = h̄0(x1, x2) = Kix1/∆,

y2 = ¯̄h0(x1, x2) = Ksx2/∆.

Here ∆βγ is the determinant of the Jacobian matrix

B(x1, x2) =


∂g1
∂y1

∂g1
∂y2

∂g2
∂y1

∂g2
∂y2

 =

(
−x1 −Ks −x1
−βγx2 −βγ(x2 +Ki)

)
,

where ∆ = Ksx2 + Kix1 + KsKi. The slow surface is stable since the −trB(x1, x2) and
detB(x1, x2) are positive.
where

P = (KiLs − γKsLi)x2 +K2
i Ls,

Q = −(KiLs − γKsLi)x1 + γK2
sLi.

Consequently, the first order approximation to the flow on the slow invariant manifold is

dx1
dτ

=
Ki

∆

[
−Lsx1 +

εKs

βγ∆3
(βγ[Kix1 + (Ks − Ls)(x2 +Ki)]Px1 + LsQx1x2)

]
+O(ε2),

dx2
dτ

=
γKs

∆

[
−Lix2 +

εKi

βγ∆3
(βγx1x2LiP + [Ksx2 + (Ki − Li)(x1 +Ks)]Qx2)

]
+O(ε2),

where the manifold is given by

y1 =
Kix1

∆
+ ε

KiKs

βγ∆4
[βγ(x2 +Ki)Px1 − x1x2Q] +O(ε2),

y2 =
Ksx2

∆
+ ε

KiKs

βγ∆4
[−βγx1x2P + (x1 +Ks)x2Q] +O(ε2).

5. Conclusion
The focus of this paper is the effective separation of slow and fast dynamics. The decomposition 
method begins by removing the slow variable from the fast equation, then an additional change of 
variables is applied to remove the fast variables from the slow equation, this results in a nonlinear 
block-triangular form.
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