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1. Introduction 
The idea of public key cryptography (PKC) was introduced by Diffie and Hellman [1] in 1976. Today, 
most successful PKC-schemes are based on the perceived difficulty of certain problems in particular 
large finite commutative rings. For example, the difficulty of solving the integer factoring problem 
(IFP) defined over the ring mZ  (where m  is the product of two large primes) forms the ground of the 
basic RSA cryptosystem [2-11]. The extended multi-dimension RSA cryptosystem [3], which can 
efficiently resist low exponent attacks, is also defined over the commutative ring [ ]m XZ .  

Currently there are many attempts to develop alternative PKC based on different kinds of problems 
on noncommutative algebraic structures. The most researchers use non-commutative groups as a good 
alternative platform for constructing public-key cryptosystems: braid groups [12-15], polycyclic 
groups [12,16], Thompson’s groups [16-18]. 

In this paper, we would like to propose a new method for designing public key cryptosystems 
based on  RS and BCH codes over finite Cayley-Dickson and finite Clifford algebras. The key idea of 
our proposal is that for a given non-commutative algebra, we can define polynomials and take them as 
the underlying work structure in order to do decoding as NP-hard for the family of Reed-Solomon 
codes over noncommutative algebras.  

The rest of the paper is organized as follows: in Section 2, the object of the study (Reed-Solomon 
and Bose-Chaudhuri-Hocquenghem codes) is described. In Section 3, the proposed method based on 
noncommutative algebras is explained. 
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2. The object of the study.  Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes 
The Bose, Chaudhuri and Hocquenghem (BCH) codes are sub class of cyclic codes. Binary BCH 
codes were discovered by Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960. 
The Reed-Solomon (RS) Code is an important subset of the non-binary BCH Codes. In 1960, Irving 
Reed and Gus Solomon published a paper in the Journal of the Society for Industrial and Applied 
Mathematics [19]. This paper described a new class of error-correcting codes that are now called 
Reed-Solomon (R-S) codes. These codes have great power and utility, and are today found in many 
applications in the intelligent communication systems, cognitive radio systems and in various 
technical communication standards like the Consultative Committee for Space Data Systems (CCSDS) 
Telemetry channel coding standard, the Digital Video Broadcasting (DVB) standards as well as in the 
Digital Subscriber Line (DSL) standard. Historically, RS codes were introduced by Reed and Solomon 
as valuation codes. In the 1960s and 1970s, RS and BCH codes were primarily studied as cyclic codes. 
The transform approach was popularized by Blahut in the early 1980s.  

In order to understand the encoding and decoding principles of Reed-Solomon (R-S) codes, it is 
necessary to venture into the area of finite fields known as Galois Fields (GF). For any prime number
p , there exists a finite field denoted GF( )p  that contains p elements. It is possible to extend GF( )p  

to a field of mp elements, called an extension field of GF( )p , and denoted by GF( ) : GF( )mq p= , 
where m  is a nonzero positive integer. Note that commutative Galois field GF( )mp  contains as a 
subset the elements of GF( )p . Symbols from the extension field GF( )mp  are used in the construction 
of classical Reed-Solomon (R-S) codes.  

An ( , )n k  linear code ( , | GF( ))Cod n k q  is k D subspace of the vector space GF ( )n q   of all n -
tuples 0 1 1( , ,..., )nc c cc −= over GF( )q , i.e., 

( , | GF( )) GF ( )nCod n k q q⊂ and { }Dim ( , | GF( ))Cod n k q k= . 
Any k  linearly independent codewords 0 1 1( , ,..., )ng g g − generate ( , | GF( ))Cod n k q , in the sense that 

1
( , | GF( )) GF( )

k

j j j
j

Cod n k q a a qg
=

  = ∀ ∈ 
  
∑ . 

Thus ( , | GF( ))Cod n k q  has kq  distinct codewords. 
Reed-Solomon (RS) codes are nonbinary cyclic codes with symbols made up of m -bit sequences, 

where m is any positive integer having a value greater 2 . RS( , )n k  codes on m -bit symbols exist for 
all n  and k  for which 0 2  2,mk n< < < + where k  is the number of data symbols being encoded, and 
n  is the total number of code symbols in the encoded block. For the most conventional RS( , )n k code, 

( , ) (2 1,2 1 2 ),m mn k t= − − −  
where t is the symbol-error correcting capability of the code, and 2n k t− =  is the number of parity 
symbols. Reed-Solomon codes achieve the largest possible code minimum distance for any linear 
code with the same encoder input and output block lengths. For Reed- Solomon codes, the code 
minimum distance is given by [2]     min 1 2 1d n k t= − + = + . 

The most natural definition of RS code is in terms of a certain evaluation map from the subspace 
GF ( )k q  of all n -tuples 0 1 1( , ,..., )km m m −=m  (information symbols (massage)) over  GF( )q  to the set 
of codewords ( , | GF( )) GF ( )nCod n k q q⊂ :  

0 1 1 0 1 1( , ,..., ) ( , ,..., )

     GF ( ) GF ( )
k n

k n

m m m c c c

q q

m c− −= =

→


  (1) 

Definition 1. Let GF( )q  be a finite field and GF( )[ ]q X denote the GF( )q -space of univariate 
polynomials where all the coefficients of X  are from GF( )q . Pick { }0 1 1, ,..., nD β β β −= n  different 
elements of  GF( )q  arranged in some arbitrary order and choose n  and k  such that 1k n q≤ ≤ − . The 
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most convenient arrangement is 1 1
0 1 1, ,..., ,...,b b b i b n

i nβ ε β ε β ε β ε+ + + −
−= = = =  for a some integer 

2,b k q+ ≤ −  where ε  is a primitive element of GF( )q . We define an encoding function for Reed-
Solomon code as  RS: GF ( ) GF ( )k nq q→  in the following form. A message 0 1 1( , ,..., )km m m −=m  with 

GF( )im q∈  is mapped to a degree 1k −  polynomial (it is called the information polynomial in the 
indeterminate X ): 

1
0 1 1

0 1 1
0

( ) ... .
k

k j
k j

j
f X m X m X m X m Xm

−
−

−
=

= + + + =∑    (2) 

Obviously, ( )f Xm  is one of the kq  polynomials over GF( )q  of degree less than k . The 
information polynomial ( )f Xm  is then mapped into the n -tuple ( )0 1 1( ), ( ),..., ( )nf f fm m mβ β β − , i.e., 

( )0 1 1 0 1 1( , ,..., ) ( ) ( ), ( ),..., ( ),..., ( ) ,k i nm m m f X f f f fm m m m mm β β β β− −= → →  
whose components ( )if βm  are equal to the evaluations of the polynomials ( )f Xm  at each field 
element GF( )i pβ ∈ : 

1
0 1 1

0 1 1
0

( ) ... ,    0 1,
k

k j
i i i k i j i

j
f m m m m i nm β β β β β

−
−

−
=

= + + + = ≤ ≤ −∑  (3) 

1
0 1 1

0 1 1
0

( ) ... ,    0 1,
k

k j
i i i k i j i

j
f m m m m i nm β β β β β

−
−

−
=

= + + + = ≤ ≤ −∑  

or 
( ) ( ) ( ) ( )

1
0 1 ( 1)

0 1 1
0

( ) ( ) ... ,    0 2,
k

b i b i b i k b i jb i
i k j

j
f f m m m m i qm mβ ε ε ε ε ε

−
+ + + − ++

−
=

= = + + + = ≤ ≤ −∑  (4) 

for a common special case 1 2
0 1 1, ,..., ,...,b b b i b n

i nβ ε β ε β ε β ε+ + + −
−= = = =  and 1n q= − .   

The code generators may thus as polynomials  
( )
( )
( )

( 0) 1 ( 0) 2 ( 0) ( 1)
0

( 1) 1 ( 1) 2 ( 1) ( 1)
1

( 2) 1 ( 2) 2 ( 2) ( 1)
2

1

1,  ,  ,   ...,   ,

1,  ,   ,  ...,   ,

1,  ,  ,   ...,   ,

... .................................................,

1,

b b b n

b b b n

b b b n

k

g

g

g

g

ε ε ε

ε ε ε

ε ε ε

ε

+ ⋅ + ⋅ + ⋅ −

+ ⋅ + ⋅ + ⋅ −

+ ⋅ + ⋅ + ⋅ −

−

=

=

=

= ( )( 1) 1 ( 1) 2 ( 1) ( 1), ,..., .b k b k b k nε ε+ − ⋅ + − ⋅ + − ⋅ −

 

Hence, generator matrix for RS codes is the Van Der Monde matrix with n k× size 

1 ( 0) 1 ( 1) 1 ( 1)

( 1) ( 0) ( 1) ( 1) ( 1) ( 1)

1 1 ... 1
...

... ... ... ...
...

b b b k

n b n b n b k

ε ε ε

ε ε ε

⋅ + ⋅ + ⋅ + −

− ⋅ + − ⋅ + − ⋅ + −

 
 
 
 
 
 

 

and encoding a message block 0 1 1( , ,..., )km m mm −=  via the evaluation map in (4) is equivalent to 
computing the Fourier-Galois Transform of the n -tuple 0 1 1(0,...,0, , ,..., ,0,...,0) :b b b km m m+ + + −  

0
11 1 ( 0) 1 ( 1) 1 ( 1) 1 ( ) 1 ( 1)

1
2 1 2 ( 0) 2 ( 1) 2 ( 1) 2 ( ) 2 ( 1)

2

2

1

1 1 ... 1 1 ... 1 1 ... 1
1 ... ... ...
1 ... ... ...

... ... ... ... ..

...

...

...

b b b k b k n

b b b k b k n

i

n

n

c
c
c

c

c
c

ε ε ε ε ε ε
ε ε ε ε ε ε

⋅ ⋅ + ⋅ + ⋅ + − ⋅ + ⋅ −

⋅ ⋅ + ⋅ + ⋅ + − ⋅ + ⋅ −

−

−

 
 
 
 
 
 
 
  =
 
 
 
 
 
 
  

1 ( 0) ( 1) ( 1) ( ) ( 1)

( 2) 1 ( 2) ( 0) ( 2)

. ... ... ... ... ... ...
... ... ... ... .... ... ... ... ... ....
1 ... ... ...
... ... ... ... ... ... .... ... ... ...
... .... ... ... ... ... .... ... ... ...
1 ...

i i b i b i b k i b k i n

n n b n

ε ε ε ε ε ε

ε ε ε

⋅ ⋅ + ⋅ + ⋅ + − ⋅ + ⋅ −

− ⋅ − ⋅ + −

0

1

1

( 1) ( 2) ( 1) ( 2) ( ) ( 2) ( 1)

( 1) 1 ( 1) ( 0) ( 1) ( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( 1)

0
...
0

0
... ...

1 ... ... ... 0

b

b

b k

b n b k n b k n n

n n b n b n b k n b k n n

m
m

m

ε ε ε
ε ε ε ε ε ε

+

+

+ −

⋅ + − ⋅ + − − ⋅ + − ⋅ −

− ⋅ − ⋅ + − ⋅ + − ⋅ + − − ⋅ + − ⋅ −

  
  
  
  
  
  
  
  

⋅ ⋅ ⋅  
  
 
 
  ⋅ ⋅ ⋅ 
   












 
 
 
 
 
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A codewords has a zero symbols in the coordinate corresponding to  iβ   if and only if ( ) 0ifm β = ; 
i.e., if and only if iβ  is a root of equation ( ) 0f X =m . By the fundamental theorem of algebra if 

{ }deg ( ) 1f X km ≤ −  then equation ( ) 0f Xm =  can have at most 1k −  roots in GF( )q . 
 

3. Methods 
In this section, we describe a construction technique of BCH and RS codes over finite 
noncommutative algebras in order to prove that maximum-likelihood decoding is NP-hard for the 
family of Reed-Solomon codes over noncommutative algebras. There are noncommutative extensions 
of GF( )p  in the form of Clifford or Cayley-Dickson algebras of mp elements 

{ }1 2( ) , ,..., | ( ) ,m m sCl p ClifAlg i i i pGF= { }1 2( ) , ,..., | ( )m m sCD p CayDicAlg i i i pGF= . 

Let us denote ( ) ( ),  ( )m m mAlg p Cl p CD p= , where sm q=  for any prime number q  and a nonzero 
positive integer s . Symbols from the Clifford or Cayley-Dickson algebras ( )mAlg p   (instead of 
symbols from the field GF( )mp ) we are going to use in the construction of generalized Reed-Solomon 
codes. 

3.1. Reed-Solomon and Bose  codes over noncommutative algebras 
Let X  be a formal noncommutative variable with respect to elements

2
( )ma Alg p∈ , i.e., aX Xa≠ . 

We introduce two noncommutative products with one key [ ]σ  

[ ] ( ) [ ] ( ), 0,
:     : ,    for   0,1,..., .

, 1
k k k ka X

a X a X X aX k
X a

σσ σ σσ
σ

σ
−=

= = = =




 

Now, let  
[ ] ( ) [ ] ( )0 1 1

1 1
, ,...,

0 0
( ) ( ) ,n i i i

n n
ii

i i
i i

f X f X a X X a Xσ σ σ σ σ σ−
− −

  − 

= =

= = =∑ ∑σ  

are polynomials with a bunch of keys ( )0 1 1 1 2 1, ,..., ... :n n n nσ Z Z Z Z Zσ σ σ − −= ∈ × × × × = . For example,   

{ } [ ] ( )
{ }

[ ] ( ) [ ] ( )
{ }

[ ] ( ) [ ]

0 0
0 1

1 2

0 11 1 1 1

2 3

0 12 2

1) 0 ,  it is trivial case: ;

2) 0,1 ,  in this case we have two variants: 

             ,  ;

3) 0,1,2 ,  in this case we have three variants:   

             ,  

a X a

a X aX a X X a

a X aX a

σ

σ

σ

∈ = ≡

∈ =

= =

∈ =

=

Z

Z

Z

( ) [ ] ( )
{ }
[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )

22 1 1 2 2

3 4

0 1 2 33 3 3 1 2 3 2 1 3 3

,  ;  

4) 0,1,2,3 ,  for this case we obtain four variants 

           ,  ,  ,  .

X X aX a X X a

a X aX a X X aX a X X aX a X X a

σ

= =

∈ =

= = = =

Z

 

There are ! 1 2 3n n= ⋅ ⋅ ⋅ ⋅ ⋅  similar bunch of keys ( )0 1 1, ,..., nσ σ σ σ −= . 

Example 1. For ( )0,0,...,0σ =  and ( )0,1,2,3,..., 1nσ = −  we obtain right- and left-side 
polynomials 

( ) [ ] ( )
( ) ( )

1 1
0,0,...,0 0

0 0
1 1

0,1,2,..., 1 [ ]

0 0

( ) ( ) ,

( ) ( ) .

n n
l i i

i i
i i

n n
n r i i i

i i
i i

f X f X a X a X

f X f X a X X a

− −
  

= =

− −
−  

= =

= = = ⋅

= = = ⋅

∑ ∑

∑ ∑
 

Let 
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[ ] ( )

[ ] [ ] ( ) ( ) ( )

0 1 1, ,...,
2 2

1

2
0

( )[ ] ( )[ ] :

( ) | ( ) & ,

n
m m

i
m

n
i

i i n
i

Alg p X Alg p X

f X a X a Alg p

σ

σ σ Z

σ σ σ

σ

−  

−

=

= =

 
= = ∀ ∈ ∈ 
 

∑
 

denote the rings of univariate polynomials over 
2

( )mAlg p  with a bunch of keys ( )0 1 1, ,..., nσ σ σ σ −= .  

Reed-Solomon codes with the bunch of keys ( )0 1 1, ,..., nσ σ σ σ −=   are obtained by evaluating 

certain subspaces of [ ]
2

( )[ ]mAlg p Xσ  in set of points  { }0 1 1, ,..., nD x x x −=  which are subsets of
2

( )mAlg p .  

Specifically, a Reed-Solomon codes [ ]{ }2
, | ( ), ( )mCode D k f X Alg pσ  of length n  and dimension k  

over 
2

( )mAlg p  are defined as follows: 
[ ]{ }

[ ] [ ] [ ]( ) [ ] [ ]( ) [ ]{ }( ){ }
( )

2

0 1 1 2

, | ( ), ( ) :

( ), ( ),..., ( ) | ( ) ( )[ ] & deg ( ) .

m

m

l

n

Code D k f X Alg p

f x f x f x f X Alg p X f X k

σ

σ σ σ σ σ σ
−

=

= ∈ <
 

Thus a Reed-Solomon code is completely specified in terms of its evaluation set { }1 2, ,..., nD x x x=  
and its dimension k .  

We assume that if a codeword [ ]{ }2
, | ( ), ( )mCode D k f X Alg pσs∈  of is transmitted and the vector 

2
( )m

nAlg p∈y  is received, the maximum-likelihood decoding task consists of computing a codeword 
[ ]{ }2

, | ( ), ( )mCode D k f X Alg pσv∈   that minimizes ( , )d s v , where ( , )d ⋅ ⋅  denotes the Hamming 

distance. The corresponding decision problem can be formally stated as follows. We let iс  be the 
codeword symbols, where i  runs from 0  to 1n − , i.e., 

( ) [ ] [ ] [ ]( )0 1 1 0 1 1, ,..., ( ), ( ),..., ( )n nc c c f x f x f x− −= σ σ σ   (5) 

and let ku  be the information symbols, where k  runs from 0 to 1k − . An RS coding procedures can 
then be defined by relating iс  to ku  according to 

[ ]
1 1

[ ]

0 0
( ) i i i

k k
ii

j j i j j i j
i i

c f x u x x u xσ σ σ
− −

−

= =

= = = ⋅∑ ∑σ  

or in matrix form 
( )

( )

( )

0 1 1

0 1 1

0 1 1

1 1

, ,...,10 1
0 0 0 0 0

, ,...,10 1
1 11 1 1

, ,...,10 1
1 1 1 1 1

10
0 0 0

...

...
...... ... ... ... ...

( ) ( ) ..

k

k

k

k

k

k
n n n n k

c x x x u
c ux x x

c x x x u

x x x

σ σ σ

σ σ σ

σ σ σ

σ σ

−

−

−

 −  

 −  

 −  
− − − − −

−

   
   
   

= =   
   
   

     

⋅ ⋅  1 1

1 11 1

1 11 1

00 0
10

11 1 1 1 1

10
11 1 1 1 10

. ( )
( ) ( ) ... ( )

.
...... ... ... ...

( ) ( ) ... ( )

k k

k k

k k

k

k

k
kn n n n n

ux x
ux x x x x

ux x x x x

σ σ

σ σσ σ

σ σσ σ

− −

− −

− −

−

−−

−−
−− − − − −

   ⋅ ⋅
   ⋅ ⋅ ⋅ ⋅   
   
   

⋅ ⋅ ⋅ ⋅      



  

  

 

These generator matrices have forms of discrete Vandermonde-Clifford-Galois transform (if 

2 2
( ) ( )m mAlg p Cl p= ) or Vandermonde -Caley-Dickson-Galois (if 

2 2
( ) ( )m mAlg p CD p= )  transform. If 

we define 
2

( )mAlg pε ∈  to be a primitive element of power n  (i.e., the powers of jε , where j  runs 

from 1 to 1n − , are all different from each other), then RS codes for 1  ( 1,2,..., )j
jx j nε −= =  can then 

be defined as 
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[ ] ( )0 1 1

1

1
, ,..., ( 1) ( )( 1)1

1
( ) ( ) ,k i i

j
j

k
j i jj

j j ix i
c f x f uσ σ σ σ σ

ε
ε ε ε−

−

−
  − − −− 

= =

= = = ⋅ ⋅∑σ  

This has the form of discrete Fourier-Clifford-Galois or Fourier-Caley-Dickson-Galois transforms 
(DFCGTs or DFCDGTs) over 

2
( )mAlg p , where the k “frequency” components (from d until 1d k+ −

) are given by the information symbols 0 1 1, ,..., ku u u − , and the other n k−  frequency components are 
fixed to zero [5]. 

Example 2. For ( )0,0,...,0=σ  and ( )0,1,2,3,..., 1n= −σ  we have right- and left-side transforms 
1 1

( ) ( 1) ( ) ( 1)

1 1
( ) ,   ( ) .

k k
r i j l i j

j j j i j j i j
i i

c f x u c f x uε ε
− −

− −

= =

= = ⋅ = = ⋅∑ ∑  

These transforms can be viewed as polynomial evaluations (5). Since evaluating a polynomial at 
multiple points can be implemented as a DFT, DFTs can be used to reduce the encode computational 
complexity, if a bunch of keys is known. When 2ln = , the Cooley-Tukey algorithm can be carried 
out. 
 
4. Conclusion 
According to Berlekamp, McEliece, and van Tilborg maximum-likelihood decoding of linear codes is 
NP-complete over all finite fields ( )pGF . In this paper, we have shown a new unified approach to the 
Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes over finite noncommutative algebras. The 
approach is based on a bunch of keys for discrete Fourier-Clifford-Galois or Fourier-Caley-Dickson-
Galois transforms. Cardinality of the set of bunch of keys is equal to !k  for ( ),n k -code. 
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