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Abstract. A single-server finite-buffer queuing system is considered on a fixed time
interval. The server accepts a non-stationary Poisson stream of incoming packets for
further transmission through a communication channel governed by a hidden Markov
chain. Round-trip times for sent packets are described by the Markov counting process
which is observed directly. The service rate is proportional to the transmission rate with
a channel-dependent factor. The transmission rate is to be optimized within the class of
feedback control policies given two performance characteristics: the average number of
lost packets and the mean level of energy consumption. The approach proposed for
control optimization is based on the optimal filter equations, the complete-information
control algorithm, and Monte Carlo simulation.
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1. Introduction

For many of data transmission networks there is a problem of incomplete information about the
current state of communication links, queuing systems, servers’ load, etc. Basically, the actual
information available for network monitors consists of round-trip times and loss messages in the
packet traffic. Despite the fact that these data cannot fully characterize the network state, one
can elaborate efficient methods for congestion control in noisy communication lines and partially
observed queuing systems [1–3]. The problem of incomplete information is especially important
for the communication networks with onboard units acting autonomously in the presence of
randomly changing environment [4–6]. Such an equipment aims at achieving several conflicting
objectives: minimum losses in incoming useful traffic; decrease of delays in data processing;
maximum battery life. These applications motivate further development of optimal control
methods for info-telecommunication systems given noisy observations.

In this paper we consider a single-server finite-buffer queuing system on a fixed time interval.
Incoming packets enter the system in a nonstationary Poisson stream for further transmission
through a loss-free communication channel. The channel state affects only delays in transmission
of packets: the worse the state, the more the time spent for sending a packet. Losses of
incoming packets occur only if the queue’s buffer is full. Similarly to the Gilbert model [7],
the communication channel state is of few variants such as “good”, “normal”, and “bad”. But
the current value of the state is not known so its dynamics is modelled by a hidden continuous-
time Markov chain. Its transition rates are supposed to be time-dependent in order to take into
account changing environment conditions caused by motion of the mobile transmitter according
to the known itinerary. Indirect information about the channel state is available from the stream
of round-trip times (RTTs) for sent packets and is described by the Markov counting process.
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Both the service rate in the queuing system and the intensity of the observation stream are
proportional to the controlled transmission rate with channel-dependent factors.

Our goal is to propose an approach for constructing feedback control policies and analyzing
their performance for the queuing system with hidden Markov state. The synthesis of the
transmission rate control is based on the optimal filter equations for the unobserved channel
state and the aggregated optimization of two performance indices: the average number of lost
packets and the mean level of energy consumption. The performance analysis of the constructed
policies is performed using the techniques of Monte Carlo simulation.

2. Model formulation and problem statement
Consider two continuous-time Markov chains Xt and Yt defined on a fixed time interval [0, T ].
The controlled state of the queuing system is described by Xt while the hidden state of the
communication channel is governed by Yt. Let N be the largest number of packets that can be
placed in the queue and K be the number of aggregated states for the channel. Following the
martingale approach in description of stochastic control systems [8], we assume that the state
spaces for Xt and Yt are comprised of unit column-vectors:

SX = {e0, e1, . . . , eN} ⊂ RN+1 and SY = {f1, . . . , fK} ⊂ RK . (1)

Since Xt is a birth-death process, its model is completely specified by two transition rates:

• the arrival rate ai,i+1 = α(t) for transition ei → ei+1, i = 0, 1, . . . , N − 1,

• the service rate ai,i−1 = m〈d, y〉1 for transition ei → ei−1, i = 1, . . . , N , where m = µ(t) is
the controlled transmission rate and 〈d, y〉 is a factor dependent of the channel state y = Yt.

The components of d ∈ RK are known positive quantities, which define the following empirical
rule: the better the state of the communication channel, the less the average time spent
for sending a packet. So we suppose the states f1, . . . , fK are arranged in accordance with
d1 > . . . > dK .

Thus, the generator of the non-homogeneous Markov process Xt is defined by the matrix
A(t, y,m) = {ai,j(t, y,m)}i,j=0,1,...,N parameterized by channel state y and transmission rate m.
Let B(t) = {bk,l(t)}k,l=1,...,K be the generator of the Markov process Yt. Its transition rates are
also assumed to be time-dependent, but the reason of this assumption is to take into account
mobility of the transmitter which leads to time-varying behavior of the communication channel.

Indirect information about the hidden state Yt is contained in the observation counting
process Rt, where Rt is equal to the number of packets whose successful delivery is confirmed up
to instant t. The intensity of Rt depends on the channel state and reflects the following natural
assumption: the better the state of communication, the higher the reliability of transmission.
So if 〈c, Yt〉 stands for the current intensity of the observation process, then the components of
c ∈ RK satisfy inequalities c1 > . . . > cK > 0.

The dependence between all the three processes has a statistical sense only: any changes in
the one process never lead to an immediate response in the other. So jumps ∆Xt,

2 ∆Yt, or ∆Rt
cannot occur at the same time.

Thus, the stochastic control system can be represented in the form3
dXt = A∗(t, Yt, µ(t))Xt dt+ dMX

t ,

dYt = B∗(t)Yt dt+ dMY
t ,

dRt = 〈c, Yt〉 dt+ dMR
t ,

(2)

1 〈·, ·〉 is the inner product.
2 ∆Xt = Xt −Xt−.
3 A∗ means transpose of A.
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where MX
t , MY

t , MR
t are pairwise orthogonal martingales [8].

A random process µ(t) is called a control with complete information if it:

(i) takes values from a prespecified segment [m,m], where m > 0;

(ii) has piecewise continuous paths;

(iii) is predictable with respect to filtration generated by Xt and Yt.

Analogously, µ(t) is called a control with incomplete information if conditions (i) and (ii) are
fulfilled but assumption (iii) is replaced with the following:

(iv) µ(t) is predictable with respect to filtration generated by Xt and Rt.

The classes of controls with complete and incomplete information are denoted by C and I,
respectively. The assumption µ ∈ C means that the current value of µ(t) is fully determined by
the prehistory {Xs, Ys: s ∈ (0, t)} of the queue system and the communication channel. But for
the case µ ∈ I we do not have direct information about the channel state, so the control µ(t)
depends functionally on the known dynamics of the queue {Xs, s ∈ (0, t)} and the observations
of the counting process {Rs, s ∈ (0, t)}.

Consider two performance indices:

J0[µ] =

T∫
0

P{Xt = N}α(t) dt and J1[µ] =

T∫
0

E{µ(t)} dt, (3)

where J0 is equal to the average number of losses while J1 stands for the mean level of power
consumption.

Now we can formulate the optimal control problem:

J0[µ]→ min
µ∈C

subject to J1[µ] ≤ J1, (4)

where J1 is a given bound such that m < J1/T < m. The goal of (4) is to find a control µ̂
that gives the minimum level of lost packets among all controls with complete information and
limited energy consumption over the time horizon T . Analogously, the optimal control with
incomplete information is defined as a solution to (4), where C is replaced with the class I.

3. Method and results
Following [9], the solution µ̂ to the optimal control problem (4) can be constructed in the form

µ̂ = µo(λ̂), where µo(λ) is the optimal control with respect to the augmented functional:

L[µ, λ] = J0[µ] + λJ1[µ]→ min
µ∈C

, (5)

and λ̂ is the Lagrange multiplier found from the dual optimization problem

L[µo(λ), λ]→ max
λ≥0

. (6)

The unconstrained control problem (5) can be solved using the dynamic programming approach.
The solution to the dynamic programming equation consists of the cost functions

ϕi,k(t, λ), i = 0, 1, . . . , N, k = 1, . . . ,K,
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whose initial values ϕi,k(0, λ) coincide with the optimum L[µo(λ), λ] calculated under the initial
conditions X0 = ei, Y0 = fk. The optimal control is defined by the rule

µo(t, λ) = mo
i,k(t, λ) if Xt− = ei, Yt− = fk,

where the set of policies

mo
i,k(t, λ), i = 0, 1, . . . , N, k = 1, . . . ,K,

are found from minimization of the right-hand side of the dynamic programming equation.
In order to construct a control with incomplete information, we have to solve the optimal

filtering equation [2, 5] for the hidden state Yt given the observation process Rt. It can be
done on-line together with applying the control policies. Let πt = E{Yt | Rt} be the conditional
expectation of the hidden state with respect to sigma-algebra Rt generated by the counting
observations {Rs, s ∈ [0, t]}. Since Yt ∈ SY , the vector πt consists of conditional probabilities

〈πt, fk〉 = P{Yt = fk | Rt}, k = 1, . . . ,K.

We propose to define a control with incomplete information in the following form:

µ̃(t) =
N∑
i=0

K∑
k=1

mo
i,k(t, λ̂)I{Xt− = ei}〈πt, fk〉,

where I{. . . } is the indicator of random event {. . . }. To explain the structure of this control it
suffices to note that the policy

µ̃i(t) =

K∑
k=1

mo
i,k(t, λ̂)〈πt, fk〉

coincides with the conditional expectation of the optimal control with complete information µ̂(t)
given the known state Xt− = ei and available observations {Rs, s < t}.

The numerical experiment was preformed with the following parameters:

N = 8, K = 2, T = 100, J1 = 143, m = 0.5, m = 8, d = col[1, 0.5], c = col[1, 0.1].

The arrival rate is shown in Fig. 1. Two channel states f1 and f2 will be referred to as “good”
and “bad”, respectively. The rate of transition “good”→“bad” and the rate of inverse transition
are shown in Fig. 2.

The optimal control policies are shown in Fig. 3, 4. If the channel is in state “bad”, the
optimal way for control of the queuing system is to decrease the transmission rate to its lower
bound m (µ̂(t) = m only if the queue is empty). For the good state, the optimal transmission
rate should be used at the highest level m on the most part of the time segment and, only in
the end, it should be switched to the lowest level m.

The behavior of the control with incomplete information is much more complicated because it
depends on fluctuations of conditional probabilities 〈πt, fk〉, k = 1, 2 (see Fig. 5). Nevertheless,
the policies µ̃i(t) also coincide with each other on the most part of the time segment if the
queuing system contains just one packet (if i > 0).

The values of performance indices J0 and J1 for the constructed controls are shown in Fig. 6.
The optimal control with complete information µ̂(t) provides the minimum average number of
lost packets J0 under the constraint on the mean level of energy consumption J1 ≤ J1. At
the same, the control with incomplete information µ̃(t) makes possible to lose less packets
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than for µ̂(t), however this result is obtained by means of a violation of the energy constraint:
J1[µ̃] > J1. In addition to the expected values (J0[µ], J1[µ]), we present the results of Monte

Carlo simulation for sample versions (J
(s)
0 [µ], J

(s)
1 [µ]) of the both performance indices:

J
(s)
0 [µ] =

T∫
0

I{Xt = N}α(t) dt, J
(s)
1 [µ] =

T∫
0

µ(t) dt.

Thus, the scheme proposed for data transmission control in the absence of complete
information needs an additional step of optimization to take into account different requirements
posed on the desired control. The development of constrained optimization techniques for
partially observed controlled queuing systems constitutes a direction of our further research.
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Figure 1. Arrival rate α(t).

Figure 2. Transition rates b1,2(t) and b2,1(t).

Математическое моделирование физико-технических процессов и систем D.V. Myasnikov, K.V. Semenikhin

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2112



Figure 3. Optimal policies m̂i,1(t) given channel state “good” and queue states i = 0, 1, . . . , 8.

Figure 4. Optimal policies m̂i,2(t) given channel state “bad” and queue states i = 0, 1, . . . , 8.

Figure 5. Policies µ̃i(t) with incomplete information given queue states i = 0, 1, . . . , 8.
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Figure 6. The expected values of losses J0 and power consumption J1 are shown as a blue cross 
for the optimal control with complete information µ̂ and as a red cross for the control with 
incomplete information µ̃. The sample values (J0

(s)
[µ], J1

(s)
[µ]) are shown as blue dots for µ = µ̂ 

and as red dots for µ = µ̃. The dash line corresponds to the upper bound for J1.
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