IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

Цифровая сортировка структурированных векторных LG пучков методом моментов интенсивности

А.В. Воляр Крымский федеральный университет им. В.И. Вернадского Симферополь, Россия volyar@cfuv.ru

Я.Е. Акимова Крымский федеральный университет им. В.И. Вернадского Симферополь, Россия yana_akimova_1994@mail.ru С.И. Халилов Крымский федеральный университет им. В.И. Вернадского Симферополь, Россия server.khalilov.94@mail.ru

Ю.А. Егоров Крымский федеральный университет им. В.И. Вернадского Симферополь, Россия yuriyegorov@cfuv.ru М.В. Брецько Крымский федеральный университет им. В.И. Вернадского Симферополь, Россия mihailbretcko4@gmail.com

Аннотация В ланной работе проведены исследования по формированию сложных структурированных векторных пучков Лагерра-Гаусса. цифровой моментов Впервые использован метол интенсивности, который позволяет определить модовый состав, распределение используя единственное интенсивности в каждой поляризационной компоненте в фокальной плоскости, либо сферической линзы, либо в плоскости двойного фокуса цилиндрической линзы.

Ключевые слова — Оптический вихрь, орбитальный угловой момент, пучки Лагерра-Гаусса.

1. Введение

Основной задачей исследований явилась формирование сложных структурированных векторных (СВ) пучков Лагерра-Гаусса (ЛГ) [1] и их сортировка методом моментов интенсивности высших порядков [2]. Представленные исследования имеют, как правило, экспериментальную направленность с использованием цифровых методов обработки картины интенсивности. Сразу заметим, что структурированный векторный пучок, содержащий множество монохроматических векторных мод с одинаковыми частотами, можно формировать, как в базисе ЛГ мод, так и в базисе мод Эрмита-Гаусса (ЭГ). Точно также цифровую сортировку мод можно осуществлять в обоих функциональных базисах методом моментов интенсивности. Для формирования СВ пучка был выбран метод, основанный на использовании пространственного модулятора света (SLM) в комбинации с поляризационной призмой [2], поскольку он позволяет формировать, как поперечно электрические (TE) и поперечно магнитные (TM) моды, но также гибридные пучки типа магнитоэлектрических (НЕ) и электромагнитных (ЕН) мод. С другой стороны, для сортировки векторных мод был впервые использован цифровой метод моментов интенсивности, который позволяет определить модовый состав.

2. Эксперимент

Эскиз экспериментальной установки представлен на рис.1. Фундаментальный линейно поляризованный пучок (Ls)после гауссов от He-Ne лазера пространственного фильтра (SLF) разделяется на два параллельных пучка делительной призмой (Bs1) и (*M1*,*M2*). системой зеркал Ha ПЗС матрице пространственного модулятора света типа Thorlabs

EXULUS-4К 1/М записаны две голограммы линейно поляризованных компонент структурированного пучка. В отличие от чисто фазовой голограммы, используемой авторами статьи [3], голограмма учитывает не только изменение амплитуды, но и распределение интенсивности, что существенно улучшает качество восстановленного пучка.

Рис. 1. Схема экспериментальной установки: Ls – Не-Ne лазер (λ = 0,633 мкм), SLF – пространственный световой фильтр, M – зеркало, Bs – делительная призма, SLM – пространственный модулятор света, D – диафрагма, P – поляризатор, λ/2 – полуволновая пластина, F – световой фильтр λ/4 – четверть волновая пластина, PBs – поляризационная делительная призма, L1,2 – сферическая линза (f_{sp}=15 см), CL – цилиндрическая линза (f_{cl}=7 см) SP – Стокс-поляриметр, CMOS1-3 – камера

Далее два восстановленных комплексносопряженных пучка проходят через поляризатор (Р), а затем полуволновые пластинки $(\lambda/2),$ через формирующие в обоих пучках ортогональные линейные поляризации. Ha светоделительном кубике Bs2 совмещаются ортогонально поляризованные пучки в один векторный пучок. Чтобы каждая мода пучка содержала оптические вихри в явной форме, необходимо перейти в циркулярно поляризованный базис, а в каждой циркулярно поляризованной компоненте измерять в базисе ЭГ мод. Кроме того, стандартный алгоритм Стокс-поляриметра предполагает использование циркулярно поляризованного базиса для визуализации векторной структуры поля. На эксперименте это преобразование осуществляет $\lambda/4$ пластинка, расположенная сразу после светоделительного кубика *Bs2*. Поляризационная структура пучка воспроизводилась с помощью Стокс-поляриметра (SP) [4]. Векторная структура поля на фоне распределения 011412 IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

интенсивности воспроизводится фотодетектором типа CMOS Michrome 20.

Рис. 2. Поляризационная структура ТЕ, ТМ, НЕ и ЕН мод. На нижней строке приведена поляризационная структура HE_{2.6} моды и ее центральный участок

На рис.2 приведена экспериментально полученная поляризационная структура стандартных векторных мод. Непрерывные линии представляют интегральные линии, касательные к векторам поляризации. Так, ТЕ и ТМ представляют характерную картину моды цилиндрических векторных пучков. HE₂₁ моду задает семейство гипербол в каждой четверти плоскости, в то время как EH₂₁ моду характеризуют лемнискаты, ориентированные вдоль х-оси. Особое внимание привлекает более сложная поляризационная структура HE₂₆ с характерными пятью кольцевыми дислокациями. Типичная картина гиперболических интегральных кривых воспроизводится в каждом светлом кольце.

Структурированный векторный ЛГ (сЛГ) пучок содержит $N=2n+\ell+1$ ЭГ мод (n - радиальное число, ℓ - азимутальное число) с амплитудным ε и фазовым θ управляющими параметрами [5]. Комплексные амплитуды СВ пучка в линейно поляризованном базисе записываются как

$$\mathbf{HE}_{n,\ell} = \hat{\mathbf{x}} \, sLG_{n,\ell}\left(x, y\right) + \hat{\mathbf{y}} \, sLG_{n,\ell}^*\left(x, y\right), \tag{1}$$

$$sLG_{s,\ell}\left(\mathbf{r} \mid \varepsilon, \theta\right) = \frac{\left(-1\right)^{n}}{2^{2n+3\ell/2}n!} \sum_{k=0}^{2n+\ell} \left(2i\right)^{k} P_{k}^{\left(n+\ell-k,n-k\right)}\left(0\right)\varepsilon_{k}\left(\varepsilon,\theta\right) HG_{2n+\ell-k,k}\left(\mathbf{r}\right), \quad (2)$$

где $\mathbf{r} = (x, y), P_k^{(n,m)}(\cdot)$ - многочлен Якоби, $\varepsilon_k = 1 + \varepsilon e^{ik\theta}$, звездочка (*) указывает на комплексное сопряжение. В качестве примера ВС пучка на рис.3в представлена структура векторного сЛГ пучка, содержащего 12 ЭГ кажлой поляризационной компоненте. мод в полученного на SLM модуляторе (см. рис.1) и структура этого же пучка (рис.3г), восстановленного после измерения спектра мод в каждой линейнополяризованной компоненте. Измерение спектра ЭГ мод осуществлялось методом моментов интенсивности высших порядков [1] в плоскости двойного фокуса цилиндрической линзы, позволяющий измерять, как квадраты модулей амплитуд, так и начальные фазы мод. Функция моментов интенсивности выбиралась в базисе ЭГ мод. Каждая поляризационная компонента в спектр ЭГ мод содержит следующие HG_{n,m-n} моды: HG_{0,11}, HG1.10, HG2.9, HG3.8, HG4.7, HG5.6, HG6.5, HG7.4, HG8.3, НG_{9,2}, НG_{10,1}, НG_{11,0}. Спектры поляризационных компонент ЭГ мод представлены на рис.3*a*,*б*. Одновременно измерялся спектр начальных фаз каждой ЭГ моды. Результаты измеренных амплитуд и фаз ЭГ мод позволяли найти поляризационные компоненты структурированного пучка согласно выражению (1). Далее векторный пучок восстанавливался и вычислялась степень корреляции интенсивности исходного И восстановленного пучков, которая была не ниже 0,9.

Рис. 3. Спектры ЭГ мод в $\hat{\mathbf{x}}$ (*a*) и $\hat{\mathbf{y}}$ (*б*) поляризационных компонентах, на сносках представлено распределение интенсивности в ортогональных компонентах поляризации; (*в*) - карта распределения поляризации векторного сЛГ пучка для $(n, \ell) = (5, 1)$ и $\varepsilon = 1, \theta = \pi/2$; (*г*)- карта распределения поляризации восстановленная по спектру мод (*a*) и (*б*)

3. Заключение

Проведены исследования по формированию сложных структурированных векторных пучков Лагерра-Гаусса. Впервые использован цифровой метод моментов интенсивности, который позволяет определить модовый состав, используя единственное распределение интенсивности кажлой в поляризационной компоненте в фокальной плоскости, либо сферической линзы, либо в плоскости двойного фокуса цилиндрической линзы.

ЛИТЕРАТУРА

- [1] Воляр, А. В. По ту сторону интенсивности, или моменты интенсивности и измерение спектра оптических вихрей сложных пучков / А.В. Воляр, М.В. Брецько, Я.Е. Акимова, Ю.А. Егоров // Компьютерная оптика. – 2018. – Т. 42, № 5. – С. 736-743.
- [2] Rosales-Guzmán, C. Simultaneous generation of multiple vector beams on a single SLM // C. Rosales-Guzmán, N. Bhebhe, A. Forbes // Optics Express. – 2017. – Vol. 25, № 21. – P. 25697.
- [3] Карпеев, С.В. Интерференционная схема для генерации поляризационно-неоднородного лазерного излучения с использованием пространственного модулятора света / С.В. Карпеев, В.В. Подлипнов, А.М. Алгубили // Компьютерная оптика. – 2020. – Т. 44, № 2. – С. 214-218. – DOI: 10.18287/2412-6179-CO-698.
- [4] Пат. 65939 Украина Дифференциальный Поляриметр / Фадеева Т.А., Воляр А.В.; Заявитель и патентообладатель Таврический национальный университет. - №65939; опубл.15.04.04, бюл. № 4.
- [5] Воляр, А.В. Может ли радиальное число вихревых мод управлять орбитальным угловым моментом? / А.В. Воляр, Е.Г. Абрамочкин, М.В. Брецько, Я.Е. Акимова, Ю.А. Егоров // Компьютерная оптика. – 2022. – Т. 46, № 6. – С. 853-863. – DOI: 10.18287/2412-6179-CO-1169.