А. А. Бирюков^{*a*}, Я. В. Дегтярева^{*a*}, М. А. Шлеенков^{*a*}

^а Самарский национальный исследовательский университет имени академика С. П. Королёва, 443086, Московское шоссе 34, Самара, Россия

Аннотация

Вероятность квантовых переходов молекулы между ее состояниями под действием электромагнитного поля представляется как интеграл по траекториям от действительного знакопеременного функционала. Предложен метод вычисления интеграла с использованием рекуррентных соотношений. Исследовано поведение двухатомной молекулы под действием импульсов лазерного излучения вне рамок теории возмущений.

Ключевые слова: Квантовая система; Квантовый переход; Функциональный интеграл; Знакопеременный действительный функционал

Введение

В настоящее время активно изучаются нелинейные процессы взаимодействия микросистем с лазерным излучением различной конфигурации и различной степени интенсивности (возбуждение и диссоциация молекул, ионизация атомов под действием лазерного излучения и др.). Представляется актуальным исследовать вероятности переходов в многоуровневых квантовых системах вне рамок теории возмущений и приближений, которые накладывают ограничения на структуру лазерного излучения – как по интенсивности, так и по форме импульсов.

Изучение процессов взаимодействия наносистем с электромагнитным излучением основано на применении функционального интегрирования. Представление вероятностей квантовых переходов интегралами по траекториям от действительного знакопеременного функционала впервые было предложено Г. В. Рязановым [1]. Однако на практике вычисление вероятностей по данному методу сопряжено с рядом трудностей из-за большой размерности входящих в выражение интегралов. Поэтому актуальной задачей является поиск метода расчета предложенных интегралов, который позволит проводить вычисления на персональных компьютерах за ограниченное время.

1. Модель квантовой системы

Рассмотрим квантовую систему, взаимодействующую с внешним электромагнитным полем. В качестве системы мы можем рассматривать валентный электрон в атоме или молекуле или молекулу, состоящую из двух и более атомов. Квантовая система имеет определенный дискретный спектр энергии. Значения энергии и соответствующие волновые функции определяются конкретной структурой исследуемой системы. Будем описывать систему с гамильтонианом \hat{H}_{syst} , энергетический уровень и состояние системы определяются уравнением

$$\hat{H}_{syst}|n\rangle = E_n|n\rangle, \ \langle n'|n\rangle = \delta_{nn'}, \ \sum_n |n\rangle\langle n| = 1, \ n = 1, 2, \dots$$
(1)

где E_n – значение энергии в квантовом состоянии $|n\rangle$, \hat{H}_{syst} – гамильтониан системы, который не зависит явно от времени *t*. Заметим, что, учитывая (1), гамильтониан системы можно представить в виде

$$\hat{H}_{syst} = \sum_{n} E_n |n\rangle \langle n|.$$
⁽²⁾

Рассмотрим воздействие электромагнитного поля на данную квантовую систему, которое будет характеризоваться оператором $\hat{V}_{inf}(t)$:

$$\hat{V}_{inf}(\tau) = q_X E_0 V(\tau),\tag{3}$$

где q – заряд частицы, x – координата частицы, E_0 – амплитуда электромагнитного поля, $V(\tau)$ – скалярная функция, определяющая зависимость поля от времени τ .

Удобно представить (3) в виде

$$\hat{V}_{inf}(\tau) = \sum_{n',n} \hbar \Omega^R_{n'n} E_0 V(\tau) |n'\rangle \langle n|, \tag{4}$$

где

$$\Omega_{n'n}^{R} = \frac{q x_{n'n} E_0}{\hbar},\tag{5}$$

– частота Раби; $x_{n'n} = |\langle n' | \hat{x} | n \rangle|$ – абсолютная величина матричного элемента оператора координаты.

1481

Полный гамильтониан системы, взаимодействующей с внешним полем, имеет вид:

$$\hat{H} = \hat{H}_{syst} + \hat{V}_{inf}(t). \tag{6}$$

Будем описывать состояние системы в каждый момент времени статистическим оператором $\hat{\rho}(t)$, эволюция которого определяется уравнением Дирака

$$\hat{\rho}(t) = \hat{U}_D(t)\hat{\rho}(0)\hat{U}_D^+(t),$$
(7)

где $\hat{\rho}(0)$ – оператор в начальный момент времени, оператор эволюции представляется как

$$\hat{U}_D(t,t_0) = T \exp[-\frac{l}{\hbar} \int_{t_0}^{t} \hat{V}_D(\tau) d\tau],$$
(8)

где

$$\hat{V}_D(\tau) = \exp\left[\frac{i}{\hbar}\hat{H}_{syst}\tau\right]\hat{V}_{inf}(\tau)\exp\left[-\frac{i}{\hbar}\hat{H}_{syst}\tau\right].$$
(9)

Используя выражения (4), (5), оператор взаимодействия (9) представим в виде, который удобен для конкретизации оператора эволюции:

$$\hat{V}_D(\tau) = \sum_{n',n} X_{n',n} |n'\rangle \langle n|, \tag{10}$$

где

$$X_{n'n}(\tau) = \hbar \Omega^R_{n'n} V(\tau) \exp[\iota \omega_{n',n} \tau], \qquad (11)$$

 $\omega_{n'n}$ – частота квантового перехода системы между стационарными состояниями с энергиями $E_{n'}$ и E_n :

$$\omega_{n'n} = \frac{E_{n'} - E_n}{\hbar}.$$
(12)

Запишем уравнение эволюции статистической матрицы плотности (7) в энергетическом представлении:

$$\rho_{n_f m_f}(t) = \sum_{n_0, m_0} \langle n_f | \hat{U}_D(t) | n_0 \rangle \rho_{n_0, m_0} \langle m_0 | \hat{U}_D^+(t) | m_f \rangle, \tag{13}$$

где

$$\rho_{n_f m_f}(t) = \langle n_f | \hat{\rho}(t) | m_f \rangle, \qquad \rho_{n_0, m_0} = \langle n_0 | \hat{\rho}(0) | m_0 \rangle.$$
(14)

Вектора $|n\rangle$, $|m\rangle$ являются собственными векторами гамильтониана системы H_{syst} .

Ядро оператора эволюции $\langle n_f | \hat{U}_D(t, 0) | n_0 \rangle$ представим в виде произведения элементарных ядер, используя групповые свойства оператора \hat{U}_D и полноту векторов-состояний $|n_k\rangle$:

$$\langle n_f | \hat{U}_D(t,0) | n_0 \rangle = \sum_{n_1,\dots,n_K=1}^N \prod_{k=1}^{K+1} \langle n_k | \hat{U}_D(t_k, t_{k-1}) | n_{k-1} \rangle, \tag{15}$$

где $t_{K+1} = t$, $n_{K+1} = n_f$, $t_0 = 0$ и

$$\langle n_k | \hat{U}_D(t_k, t_{k-1}) | n_{k-1} \rangle = \langle n_k | \exp[-\frac{i}{\hbar} \int_{t_{k-1}}^{t_k} \hat{V}_D(\tau) d\tau] | n_{k-1} \rangle,$$
 (16)

где $t_k > t_{k-1}$.

В работе [17] доказано, что для малых интервалов времени ($(t_k - t_{k-1}) \rightarrow 0$) ядро оператора эволюции $\langle n_k | \hat{U}_D(t_k, t_{k-1}) | n_{k-1} \rangle$ имеет вид

$$\langle n_k | \hat{U}_D(t_k, t_{k-1}) | n_{k-1} \rangle = \int_0^1 \exp[-i\Delta S[n_k, t_k; n_{k-1}, t_{k-1}; \xi_{k-1}]] d\xi_{k-1},$$
(17)

где

$$\Delta S[n_k, t_k; n_{k-1}, t_{k-1}; \xi_{k-1}] = 2\pi (n_k - n_{k-1})\xi_{k-1} + 2\Omega_{n_k n_{k-1}}^R V(t_k)(\cos(2\pi (n_k - n_{k-1})\xi_{k-1} + \omega_{n_k, n_{k-1}}t_k)(t_k - t_{k-1}).$$
(18)

– безразмерное действие (в единицах \hbar) в энергетическом представлении.

Полная амплитуда перехода (15) с учетом (17) примет вид

$$\langle n_f | \hat{U}_D(t,0) | n_0 \rangle = \sum_{n_1,\dots,n_K} \int_0^1 \dots \int_0^1 \exp[-\iota S[n_f, n_K, \xi_K; \dots; n_k, n_{k-1}, \xi_{k-1}; \dots; n_1, n_0, \xi_0]] d\xi_0 \dots d\xi_K$$
(19)

где действие S является функционалом на континууме траекторий, определяемых в дискретном пространстве переменных n_k , размеры которого определяются числом квантовых уровней исследуемой системы, и непрерывном ограниченном на [0, 1] пространстве действительных переменных ξ_k :

$$S[n_f, n_K, \xi_K; ...; n_k, n_{k-1}, \xi_{k-1}; ...; n_1, n_0, \xi_0] = \sum_{k=1}^{K+1} \Delta S[n_k, n_{k-1}, \xi_{k-1}]$$
(20)

с условиями: $t_{K+1} = t$, $n_{K+1} = n_f$, $t_0 = 0$.

Уравнение эволюции матрицы плотности (13), с учетом (19), принимает вид:

$$\rho_{m_f,n_f}(t) = \sum_{n_0,\dots,n_K} \sum_{m_0,\dots,m_K} \int_0^1 \dots \int_0^1 d\xi_0 \dots d\xi_K d\zeta_0 \dots d\zeta_K \rho_{n_0,m_0}(0) \times \exp[-\iota(S[n_f, n_K, \xi_K; \dots; n_k, n_{k-1}, \xi_{k-1}; \dots; n_1, n_0, \xi_0] - -S[m_f, m_K, \zeta_K; \dots; m_k, m_{k-1}, \zeta_{k-1}; \dots; m_1, m_0, \zeta_0])],$$
(21)

где функционал $S[m_f, m_K, \zeta_K; ...; m_1, m_0, \zeta_0]$ имеет точно такую же структуру, что и $S[n_f, n_K, \xi_K; ...; n_1, n_0, \xi_0]$ с заменой n_i, ξ_i на m_i, ζ_i .

Вероятность квантового перехода из чистого квантового состояния $\hat{\rho}(0) = |n_{in}\rangle\langle n_{in}|$, когда

$$\rho_{n_0,m_0}(0) = \delta(n_0 - n_{in})\delta(m_0 - n_{in})$$

в начальный момент времени *t* = 0, в конечное чистое квантовое состояние

$$\hat{\rho}(t) = |n_f\rangle \langle n_f|$$

в момент времени *t* в соответствии с уравнением (21) принимает вид:

$$P(n_f, t|n_{in}, 0) = \sum_{n_1, \dots, n_K} \sum_{m_1, \dots, m_K} \int_0^1 \dots \int_0^1 d\xi_0 \dots d\xi_K d\zeta_0 \dots d\zeta_K \times \exp[-\iota(S[n_f, \dots, n_k, \dots, n_{in}; \xi_K, \dots, \xi_k, \dots, \xi_0] - S[n_f, \dots, m_k, \dots, n_{in}; \zeta_K, \dots, \zeta_k, \dots, \zeta_0])].$$
(22)

В работе [17] доказано, что вероятность квантового перехода (22) может быть представлена в виде функционального интеграла с действительным подынтегральным функционалом:

$$P(n_f, t_f | n_{in}, 0) = A_{norm} \sum_{n_1, \dots, n_K} \sum_{m_1, \dots, m_K} \int_0^1 \dots \int_0^1 \times$$

$$\times \cos[S[n_f, n_K, \xi_K, m_K, \zeta_K; ..; n_{k-1}, \xi_{k-1}, m_{k-1}, \zeta_{k-1}; ..; n_{in}, \xi_0, \zeta_0]] d\xi_0 .. d\xi_K d\zeta_0 .. d\zeta_K,$$
(23)

где

$$S[n_f, n_K, \xi_K, m_K, \zeta_K; ...; n_{k-1}, \xi_{k-1}, m_{k-1}, \zeta_{k-1}; ...; n_{in}, \xi_0, \zeta_0] = \sum_{k=1}^{K+1} \Delta S(n_k, m_k, m_{k-1}, n_{k-1}, \xi_{k-1}, \zeta_{k-1}),$$
(24)

действие в энергетическом представлении имеет вид (24); A_{norm} – константа, сохраняющая нормировочное условие $\sum_{n \in I} P(n_f, t_f | n_{in}, 0) = 1.$

2. Алгоритм вычисления функционального интеграла

Вычисление вероятности квантовых переходов численными методами по формуле (23) приводит к правильным результатам в согласии с экспериментом. Однако практически расчеты можно проводить лишь для малых интервалов времени *t*. Для больших интервалов *t* резко возрастают требования к ресурсам вычислительной машины и ошибки вычислений. Поэтому для численных расчетов вероятностей в соответствии с формулой (23) предлагается метод рекуррентных соотношений, который позволит сократить время счета для больших *t* и повысить точность расчетов.

Для построения алгоритма численного расчета вероятности квантового перехода удобно ввести функцию вероятности, представленную выражением

$$\widetilde{P_{cos}}(n_{K+1}, m_{K+1}; t_{K+1}; n_{in}, t_0) = \widehat{R}_K \dots \widehat{R}_0 \{ A^{-1} \cos[S[n_f, n_K, \xi_K, m_K, \zeta_K; ..; n_k, n_{k-1}, \xi_{k-1}, m_{k-1}, \zeta_{k-1}; ..; n_{in}, \xi_0, \zeta_0]] \},$$
(25)

где [$S[n_f, n_K, \xi_K, m_K, \zeta_K; ...; n_k, n_{k-1}, \xi_{k-1}, m_{k-1}, \zeta_{k-1}; ...; n_{in}, \xi_0, \zeta_0$] представляется выражением (24).

Для упрощения записи выражения и математических преобразований введены операторы:

$$\widehat{R}_{k} = \sum_{n_{k}=1}^{N} \sum_{m_{k}=1}^{N} \int_{0}^{1} d\xi_{k} \int_{0}^{1} d\zeta_{k}, \ k = 1, 2, \dots$$
(26)

Для фиксированных $m_0 = n_0 = n_{in}$ в начальный момент времени $t_0 = 0$

$$\widehat{R_0} = \int_0^1 d\xi_0 \int_0^1 d\zeta_0.$$
(27)

Вероятность квантового перехода из состояния $|n_{in}\rangle$ в состояние $|n_{K+1}\rangle$ получаем из функции (25), полагая $m_{K+1} = n_{K+1}$:

$$P(n_{K+1}, t_{K+1}; n_{in}, 0) = \widetilde{P_{cos}}(n_{K+1}, m_{K+1}, t_{K+1}; n_{in}, 0)\delta(n_{K+1} - m_{K+1}),$$
(28)

где $\delta(n_{K+1} - m_{K+1})$ – символ Кронекера. нормировочная константа A определяется из условия:

п

$$\sum_{K+1=1}^{N} P(n_{K+1}, t_{K+1}; n_{in}, 0) = 1.$$

В формуле (25) разложим косинус суммы по рекуррентной формуле, то есть представим ее в виде (для простоты опустим нормировочный множитель):

$$\widetilde{P_{cos}}(n_{K+1}, m_{K+1}; n_{in}, t_0) = \widehat{R}_K ... \widehat{R}_0 \times \\ \times \{ \cos[\Delta S(n_{K+1}, m_{K+1}, n_K, m_K, \xi_K, \zeta_K)] \cos[\sum_{k=1}^K \Delta S(n_k, n_{k-1}, m_k, m_{k-1}, \xi_k, \zeta_k)] - \\ - \sin[\Delta S(n_{K+1}, m_{K+1}, n_K, m_K, \xi_K, \zeta_K)] \sin[\sum_{k=1}^K \Delta S(n_k, n_{k-1}, m_k, m_{k-1}, \xi_k, \zeta_k)] \}.$$
(29)

С учетом свойств операторов $\widehat{R}_0...\widehat{R}_K$ уравнение (29) представим в виде

$$P_{cos}(n_{K+1}, m_{K+1}, t_{K+1}; n_{in}, 0) = \\ = \widehat{R}_{K} \cos[\Delta S(n_{K}, n_{K-1}, m_{K}, m_{K-1}, \zeta_{K-1}, \zeta_{K-1})] \times \widehat{R}_{K-1} \dots \widehat{R}_{0} \cos[\sum_{k=1}^{K} \Delta S(n_{k}, n_{k-1}, \zeta_{k}, m_{k}, m_{k-1}, \zeta_{k})] - \\ - \widehat{R}_{K} \sin[\Delta S(n_{K}, m_{K}, n_{K-1}, m_{K-1}, \zeta_{K-1}, \zeta_{K-1})] \times \widehat{R}_{K-1} \dots \widehat{R}_{0} \sin[\sum_{k=1}^{K} \Delta S(n_{k}, n_{k-1}, \zeta_{k}, m_{k}, m_{k-1}, \zeta_{k})].$$
(30)

Введем вспомогательные функции вероятности в уравнении (30)

$$\widetilde{P_{cos}}(n_K, m_K, t_K; n_{in}, t_0) = \widehat{R}_{K-1} \widehat{R}_{K-2} \dots \widehat{R}_0 \cos[\Delta S(n_K, n_{K-1}, m_K, m_{K-1}, \xi_{K-1}, \zeta_{K-1})],$$
(31)

$$\widetilde{P_{sin}}(n_K, m_K, t_K; n_{in}, t_0) = \widehat{R}_{K-1} \widehat{R}_{K-2} \dots \widehat{R}_0 \sin[\Delta S(n_K, m_K, n_{K-1}, m_{K-1}, \xi_{K-1}, \zeta_{K-1})].$$
(32)

Тогда (30) примет вид:

$$\widetilde{P_{cos}}(n_{K+1}, m_{K+1}, t_{K+1}; n_{in}, t_0) = \widehat{R}_K \{ \cos[\Delta S(n_{K+1}, n_K, m_{K+1}, m_K, \xi_K, \zeta_K)] \widetilde{P_{cos}}(n_K, m_K, t_K; n_{in}, t_0) \} - \widehat{R}_K \{ \sin[\Delta S(n_{K+1}, n_K, m_K, \xi_K, \zeta_K)] \widetilde{P_{sin}}(n_K, m_K, t_K; n_{in}, t_0) \}$$
(33)

Формула (33) представляет собой рекуррентное соотношение между $\widetilde{P_{cos}}(n_{K+1}, m_{K+1}; t_{K+1}; n_{in}, t_0)$ и функциями, определенными на пространстве переменных меньшей размерности $\widetilde{P_{cos}}(n_K, m_K, t_K; n_{in}, t_0)$, $\widetilde{P_{sin}}(n_K, m_K, t_K; n_0, t_0)$. Для вычисления функций $\widetilde{P_{cos}}(n_k, m_k, t_k; n_0, t_0)$, $\widetilde{P_{sin}}(n_k, m_k, t_k; n_{in}, t_0)$ на k-м шаге используем аналогичные рекуррентные соотношения:

$$\widetilde{P_{cos}}(n_k, m_k, t_k; n_{in}, t_0) = \widehat{R}_{k-1} \{ \cos[\Delta S(n_k, m_k, n_{k-1}, m_{k-1}, \xi_{k-1}, \zeta_{k-1})] \widetilde{P_{cos}}(n_{k-1}, m_{k-1}, t_{k-1}; n_{in}, t_0) \} - \widehat{R}_{k-1} \{ \sin[\Delta S(n_k, m_k, n_{k-1}, m_{k-1}, \xi_{k-1}, \zeta_{k-1})] \widetilde{P_{sin}}(n_{k-1}, m_{k-1}, t_{k-1}; n_{in}, t_0) \}; \quad (34)$$

$$\widehat{P_{sin}}(n_k, m_k, t_k; n_{in}, t_0) = \widehat{R}_{k-1} \{ \sin[\Delta S(n_k, m_k, n_{k-1}, m_{k-1}, \zeta_{k-1})] \widehat{P_{cos}}(n_{k-1}, m_{k-1}, t_{k-1}; n_{in}, t_0) \} + \widehat{R}_{k-1} \{ \cos[\Delta S(n_k, m_k, n_{k-1}, m_{k-1}, \zeta_{k-1})] \widehat{P_{sin}}(n_{k-1}, m_{k-1}, t_{k-1}; n_{in}, t_0) \}. \quad (35)$$

Таким образом, мы получаем цепочку уравнений, в которых на каждом шаге по k определяем значения функций $\widetilde{P_{cos}}(n_k, m_k, t_k; n_{in}, t_0)$, $\widetilde{P_{sin}}(n_k, m_k, t_k; n_{in}, t_0)$ через функции $\widetilde{P_{cos}}(n_{k-1}, m_{k-1}; t_{k-1}; n_{in}, t_0)$ и $\widetilde{P_{sin}}(n_{k-1}, m_{k-1}, t_{k-1}; n_{in}, t_0)$, которые мы определяем на (k-1)-м шаге по рекуррентным формулам:

$$\overline{P_{cos}}(n_{k-1}, m_{k-1}, t_{k-1}; n_{in}, t_0) = \widehat{R}_{k-2} \{ \cos[\Delta S(n_{k-1}, m_{k-1}, n_{k-2}, m_{k-2}, \xi_{k-2}, \zeta_{k-2})] \overline{P_{cos}}(n_{k-2}, m_{k-2}, t_{k-2}; n_{in}, t_0) \} - \widehat{R}_{k-2} \{ \sin[\Delta S(n_{k-1}, m_{k-1}, n_{k-2}, m_{k-2}, \xi_{k-2}, \zeta_{k-2})] \widetilde{P_{sin}}(n_{k-2}, m_{k-2}, t_{k-2}; n_{in}, t_0) \}, \quad (36)$$

$$\widetilde{P_{sin}}(n_{k-1}, m_{k-1}, t_{k-1}; n_{in}, t_{0}) = \widehat{R}_{k-2} \{ \sin[\Delta S(n_{k-1}, m_{k-1}, n_{k-2}, m_{k-2}, \xi_{k-2}, \zeta_{k-2})] \widetilde{P_{cos}}(n_{k-2}, m_{k-2}, t_{k-2}; n_{in}, t_{0}) \} + \\ + \widehat{R}_{k-2} \{ \cos[\Delta S(n_{k-1}, m_{k-1}, n_{k-2}, m_{k-2}, \xi_{k-2}, \zeta_{k-2})] \widetilde{P_{sin}}(n_{k-2}, m_{k-2}, t_{k-2}; n_{in}, t_{0}) \}.$$

$$(37)$$

Для вычисления функций вероятности по предложенной схеме необходимо задать начальные условия. В начальный момент времени t = 0 система находится в состоянии $|n_{in}\rangle$, поэтому

$$P_{cos}(n_{in}, m_{in}, 0; n_{in}, 0) = 1, P_{sin}(n_{in}, m_{in}, 0; n_{in}, 0) = 0.$$

Поэтому при К = 1 функции вероятности, согласно (33) и (35), имеют вид:

$$\widetilde{P_{cos}}(n_1, m_1, t_1; n_{in}, 0) = \widehat{R_0} [\cos\{\Delta S(n_1, m_1, n_{in}, \xi_0, \zeta_0)\}],$$
$$\widetilde{P_{sin}}(n_1, m_1, t_1; n_{in}, 0) = \widehat{R_0} \{\sin[\Delta S(n_1, m_1, n_{in}, \xi_0, \zeta_0)]\}.$$

Далее вычисления проводим по указанной схеме.

Вычислив значения $P_{cos}(n_K, m_K, t_K; n_{in}, 0)$ и $P_{sin}(n_K, m_K, t_K; n_{in}, 0)$ и нормировочную постоянную A, мы находим вероятность квантового перехода из состояния $|n_{in}\rangle$ в состояние $|n_K\rangle$:

$$P(n_{K}, t_{K}; n_{in}, 0) = \widetilde{P_{cos}}(n_{K}, m_{K}, t_{K}; n_{in}, 0)\delta(n_{K+1} - m_{K+1})$$

3. Моделирование двухфотонных осцилляций Раби в трехуровневой системе

Рис. 1: Вероятности квантовых переходов между основным и возбужденным состояниями

В экспериментах Gentile и соавторов [18] исследовались двухфотонные переходы в кальции между ридберговскими (высоковозбужденными) состояниями 52*p* и 51*p*. В экспериментальной установке валентный электрон в атомах кальция из своего основного состояния возбуждается в ридберговское состояние 52*p*, которое мы обозначим $|i\rangle$. Из этого состояния атом может путем однофотонного излучения перейти в состояние 51*d*, которое мы обозначим $|a\rangle$. С уровня $|a\rangle$ электрон с излучением одного фотона может перейти на уровень $|f\rangle$.

Частоты квантовых переходов между уровнями атомов определяются выражениями:

$$v_{ia} = \frac{E_i - E_a}{h} = 33.7 \ \Gamma \Gamma \mu, \qquad v_{af} = \frac{E_a - E_f}{h} = 20.18 \ \Gamma \Gamma \mu, \qquad v_{if} = \frac{E_i - E_f}{h} = 53.88 \ \Gamma \Gamma \mu.$$

Параметры осцилляций Раби задаются следующими выражениями:

$$Ω_{ia}^R = 1319.47 \text{ M}$$
Γμ, $Ω_{af}^R = 1822.12 \text{ M}$ Γμ.

Атомы облучались электромагнитным полем частотой $\Omega = 169.27 \ \Gamma \Gamma \mu$. Эксперимент позволял определить частоту Раби между уровнями $|i\rangle$ и $|f\rangle \Omega_{if}^{R2} = 25.45 \ M \Gamma \mu$. Осцилляции Раби наблюдаются в результате двухфотонных переходов между уровнями $|i\rangle$ и $|f\rangle$.

Теоретическое объяснение наблюдаемых двухфотонных осцилляций Раби представляет большие трудности, так как данное является нелинейным процессом. Авторы эксперимента предложили объяснение на основании уравнения Шредингера, в котором делалось много упрощений в модели, так что формулы для оценки частоты Раби получились весьма приближенными. Проведенное численное моделирование на основании предложенного метода с использованием параметров, изложенных выше, привело к графикам, изображенным на рисунке 1. На рисунке 1 график (а) представляет вероятность пребывания атома в квантовом состоянии $|i\rangle$, (6) – $|f\rangle$. Из графиков видно, что период осцилляций Раби равен 250 пс, что соответствует наблюдаемой на опыте величине.

В данной статье проведены численные расчеты эволюции трехуровневой системы через функциональные интегралы (23) с использованием рекуррентных соотношений (33) – (35). На рисунке 1 представлены экспериментальные результаты численных расчетов временных зависимостей вероятностей квантовых переходов с шагом по временной оси $\Delta t = 0.001$.

Заключение

Полученные результаты показали, что выбранный метод численного моделирования дает результаты, позволяющие описать нелинейные процессы в атомной физике с высокой точностью. Достоинством предложенного метода является его сравнительно малая ресурсоемкость, что позволяет применять его для решения более сложных задач за приемлемое время.

Литература

- [1] Ryazanov G. V. Quantum-mechanical probability as a sum over path // JETP. 1958. V.35, no. 1.
- [2] Sweatlock, L. A. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles / L.A. Sweatlock, S.A. Maier, H.A. Atwater [et al.] // Phys.Rev. B. - 2005. - V. 71. - P. 235408.
- [3] Hao, E., Schatz G. C. Electromagnetic fields around silver nanoparticles and dimers / E. Hao, G.C. Schatz // J. Chem. Phys. 2004. V. 120. P. 357-369.
- [4] Govorov, A. O. Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions // Phys.Rev. B. 2010. V. 82.
 P. 155322.
- [5] Кошляков, П.В. Инфракрасная многофотонная диссоциация метилтрифторсилана / П.В. Кошляков, Е.Н. Чесноков, С.Р. Горелик [и др.] // Химическая физика. – 2006. – № 25. – С. 12–22.
- [6] Ursrey, D. Multiphoton Dissociation of HeH+ below the He+(1s) + H(1s) Threshold / D. Ursrey, F. Anis, B.D. Esry// arXiv:1112.3688v1 [physics.atom-ph].
- [7] Wellers, Ch. Resonant IR multi-photon dissociation spectroscopy of a trapped and sympathetically cooled biomolecular ion species / Ch. Wellers, A. Borodin, D. Vasilyev [et al.] // Phys. Chem. Chem. Phys. 2011. V. 13. P. 18799–18809.
- [8] Richter, M. Extreme Ultraviolet Laser Excites Atomic Giant Resonance / M. Richter, S.V. Amusia, T. Bobashev [et al.] // Phys. Rev. Let. 2009. V. 102. P. 163002.
- [9] Farrell, J.P. Strong Field Ionization to Multiple Electronic States in Water / J.P.Farrell, S. Petretti, J. Förster [et al.] // Phys. Rev. Let. 2011. № 107. P. 083001.
- [10] Goodsell, A. Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube / A. Goodsell, T. Ristroph, J.A. Golovchenko [et al.] // Phys. Rev. Let. 2010. – V. 104. – P. 133002.
- [11] Raynaud, M. Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: Evidence for coupling between surface and interface plasmons / M. Raynaud, J. Kupersztych // Phys. Rev. B. – 2007. – V. 76. – P. 2414002.
- [12] Raynaud, M. Anomalous Multiphoton Photoelectric Effect in Ultrashort Time Scales / M. Raynaud, J. Kupersztych // Phys. Rev. Let. 2005. V. 95 P. 147401.
- [13] Zhdanovich, S. Quantum Resonances in Selective Rotational Excitation of Molecules with a Sequence of Ultrashort Laser Pulses / S. Zhdanovich, C. Bloomquist, J. Floss, I. Sh. Averbukh, J. W. Hepburn, V. Milner // Phys. Rev. Lett. – 2012. – V. 109. – P. 043003.
- [14] Floss, J. Anderson localization in laser-kicked molecules / J. Floss, Shm. Fishman, I. Sh. Averbukh // Phys. Rev. A. 2013. V. 88. P. 023426.
- [15] Floss, J. Quantum resonance, Anderson localization, and selective manipulations in molecular mixtures by ultrashort laser pulse / J. Floss, I. Sh. Averbukh // Phys. Rev. A. - 2013. - V. 86. - P. 021401.
- [16] Фейнман, Р. Квантовая механика и интегралы по траекториям. / Р. Фейнман, А. Хибс // М.: Мир, 1968.
- [17] Бирюков, А.А. Вычисление вероятностей переходов квантовой системы путем интегрирования вещественных функционалов / А.А. Бирюков, М.А. Шлеенков // Теоретическая физика. 2012. Т. 13. С. 8–42.
- [18] Gentile, T. R. Experimental study of one- and two-photon Rabi oscillations / T. R. Gentile, B. J. Hughey, D. Kleppner [et al.] // Phys.Rev. A. 1989. V. 40, no 9. P. 5103–5115.
- [19] Бирюков, А.А., Шлеенков М.А. Описание двухфотонных осцилляций Раби в формализме интегрирования по траекториям / А.А. Бирюков, М.А. Шлеенков // Теоретическая физика. 2012. Т. 13. С. 43–55.
- [20] Бирюков А.А., Шлеенков М.А. Представление вероятностей квантовых переходов функциональным интегралом в пространстве энергетических состояний / А.А. Бирюков, М.А. Шлеенков // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. – 2015. – Т. 19, № 2. – С. 221–240.
- [21] Biryukov, A. Path integral approach to the problem of rotational excitation of molecules by an ultrashort laser pulses sequence / A. Biryukov, M. Shleenkov // arXiv:1407.3893 [quant-ph]
- [22] Скалли, М.О. Квантовая оптика. / М.О. Скалли, М.С. Зубайри. М.: Физматлит, 2003.