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I. INTRODUCTION 

Conventional adaptive optical systems are generally used 
to obtain the diffraction-limited focal spot in the far field [1]. 
However, there are a few tasks when the desired intensity 
distribution should be obtained at the target plane [2]. One of 
the promising ways to achieve this is to use adaptive optical 
tools and methods that allow to obtain the desired intensity 
distribution of the light by controlling its wavefront [3]-[8]. 
For example, it is necessary for the high-quality laser beam 
cutting, laser fusion, laser thermal processing etc. There are a 
few scientific groups who working on this problem and also 
applying conventional deformable mirrors, membrane 
mirrors for astronomy, etc. [9]-[13]. 

The idea of this work is to automate the process of the 
desired intensity distribution formation by means of setting 
the control signals to the phase-only spatial light modulator 
(SLM) [14], [15] and getting the feedback signal from the 
intensity analyzer placed at the focal plane of the focusing 
lens. 

II. BEAM SHAPING ALGORITHM 

The intensity distribution I(x,y) could be considered 
either as Gaussian or as a flat one, and initial phase 
distribution φ(x,y) was flat at starting point. Far field was 
calculated by combining the phase and intensity distributions 
using the principle of free space propagation: 
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of Zernike coefficients, 𝑓 is focal length of the lens. 

Zernike coefficients were found for beam formation 
using hill-climbing method by minimizing merit function Ф 
through change of Zernike coefficients (2). The merit 

function Φ was calculated by summing the absolute 
difference between the simulated intensity distribution at the 
focal spot and the desired shape (𝐼𝑑𝑒𝑠𝑖𝑟𝑒𝑑): 

 𝛷 = ∑∑ |𝐼𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑥, 𝑦) − 𝐼𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑥, 𝑦)|
2
      () 

When Zernike values are determined, they should be 
reproduced with a phase control device, and in the ideal 
situation the desired result should be reached. 

The main steps of the intensity distribution formation 
algorithm (based on hill-climbing algorithm [16]) are as 
follows: 

1. Analytically calculate Idesired  (it depends upon the 
desired shape of beam), 

2. Simulate far-field shape Isimulated using formula (1), 

3. Compute merit function Φ (Idesired, Isimulated) using 
formula (2), 

4. Select new Zernike coefficients and calculate new 
phase distribution φ(x,y) according to Zernike 
coefficients, 

5. Calculate new Isimulated, 

6. Compute new merit function Φ (Idesired, Isimulated), 

Repeat steps 4-6 until the best Zernike coefficients are 
found. 

III. EXPERIMENTAL SETUP & RESULTS 

The scheme of the assembled experimental setup with the 
SLM is presented in Fig. 1. 

 

Fig. 1. Scheme of the experimental setup 

A collimated laser beam (wavelength 0.65 µm) of 6 mm 
diameter propagated through the polarizer, reflected from the 
SLM, propagated through the analyzer and focused on the 
CCD camera with the micro-objective to analyze the 



IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) 
Секция 1. Компьютерная оптика и нанофотоника 

010442 

intensity distribution of the focal spot. The camera provided 
image data to the computer. We used the SLM made by 
Jasper Display Corp. (1920×x1080 pixels, 12.5×x7.1 mm 
active area) [17]. It operated in an 8-bit regime. The CCD 
camera with ½” sensor was used as an intensity analyzer. 

Using the experimental setup described above we 
obtained the intensity doughnut and flattop intensity 
distributions with the encircled energy presented in the fig. 2. 

 

Fig. 2. Encircled energy: (a) doughnut, (b) flattop intensity distributions 

It can be seen that for the doughnut intensity distribution 
almost 60% of the initial energy was concentrated in the 
clearly seen ring whereas for the flattop intensity distribution 
75% of the initial energy was concentrated in the central part 
of the beam. 

IV. CONCLUSION 

The obtained experimental results clearly show that the 
adaptive optical system with the automated control algorithm 
can be rather efficient for the laser beam shaping tasks. 
Using the SLM as a control device and the CCD camera as 
an intensity analyzer allows to achieve the desired intensity 
distributions of the laser beam in the far field. The results 
obtained show that the suggested software and hardware 
solution could be efficiently used in such applications as 
high-quality laser beam cutting, laser fusion and laser 
thermal processing of the materials. 
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