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Abstract. Nowadays important advances in mathematical models of nonlinear fracture 
mechanics have been made in the last two decades as scientists and engineers strive to imbue 
mathematical models with more realistic details at microstructure fracture and damage 
mechanisms in the failure process. Such mathematical models are reviewed with the aim of 
providing users insight into the key ideas, features and differences of prevailing models in this 
paper. Several models and asymptotic solutions are described. Some applications for these 
models are also given.  
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1. Introduction 
Knowledge of stress, strain and displacement fields in the vicinity of the crack tip under mixed-mode 
loading conditions is important for the justification of fracture mechanics criteria and has attracted 
considerable attention nowadays [1-9]. Damage field around a crack tip essentially affects the 
surrounding stress field, and hence governs the crack extension behaviour in the material. This effect 
of the damage field is an important problem either in the discussion of stability and convergence in 
crack extension analysis. So far mainly crack problems for the pure opening mode I at symmetrical 
loading have been thoroughly treated [1-3]. The corresponding fracture criteria have been obtained on 
the assumption that the crack continues to extend along its original line (two-dimensional case) or 
plane (three-dimensional case) in a straightforward manner on the ligament. Nowadays the analysis of 
mixed-mode loading of cracked structures in nonlinear materials is of particular interest. In 
engineering practice, there are plenty of examples and reasons leading to mixed-mode loading of 
cracked structures when mode I is superimposed by mode II and/or III, the symmetry (or 
antisymmetry) is violated and the situation is related to mixed-mode loading [4]. The type of loading 
on a structure (tension, shear, bending, torsion) can also change during service. For a crack this results 
in an alteration of opening mode I, II and III which is why the study of mixed-mode loads is of 
particular importance [1-6]. In linear fracture mechanics the principle of superposition allows to obtain 
solutions for mixed mode I/II crack problems whereas in nonlinear fracture mechanics many questions 
are still open [8,10-12]. Analysis of the near crack-tip fields in power-law hardening (or power-law 
creeping) damaged materials under mixed-mode loading results in new nonlinear eigenvalue problems 
in which the whole spectrum of the eigenvalues and orders of stress singularity have to be determined 
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[10-12]. The objective of this study is to analyze the crack-tip fields in a damaged material under 
mixed-mode loading conditions and to consider the meso-mechanical effect of damage on the stress-
strain state near the crack tip. 
 
2. Mathematical formulation of the problem and basic equations 
A static mixed mode crack problem under plane stress conditions is considered. The equilibrium 
equations and compatibility condition in the polar coordinate system can, respectively, be written as 
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 The constitutive equations are described by the power law 1(3 / 2) ( / ) /n
ij e ijB sε σ ψ ψ−= , where ijs  

are the deviatoric stress tensor components; ,B n  are material constants; ψ  is an integrity (continuity) 
parameter; ijε  are the strain components which for the plane stress conditions take the form: 

( ) ( ) ( ) ( ) ( )1 1 12 / 2 , 2 / 2 , 3 / 2 .n n n n n n
rr e rr e rr r e rB B Bθθ θθ θθ θ θε σ σ σ ψ ε σ σ σ ψ ε σ σ ψ− − −= − = − =    

 The Mises equivalent stress is expressed by 2 2 23e rr rr rθθ θθ θσ σ σ σ σ σ= + − + . 
 The constitutive model described before  is the phenomenological model of Kachanov and 
Rabotnov widely employed in creep damage theory and in damage analysis of high temperature 
structures [3,4,8,10,13,14]. The material parameters pertinent to power-law creeping materils for 
copper, the aluminium alloy, ferritic steels obtained from creep curves are given in [15]. By noting 
that the creep damage is brought about by the development of microscopic voids in creep process, 
L.M. Kachanov [13-16] represented the damage state by a scalar integrity variable ( )0 1ψ ψ≤ ≤  where 

1ψ = and 0ψ =  signify the initial undamaged state and the final completely damaged state (or final 
fractured state), respectively. L.M. Kachanov described the damage development by means of an 
evolution equation ( )/ ,m

eAψ σ ψ= − where ψ  denotes the time derivative, while A  and m  are 
material constants. The solution of the system formulated should satisfy the traditional traction free 
boundary conditions on the crack surfaces ( ) ( ), 0, , 0.rr rθθ θσ θ π σ θ π= ± = = ± =  

The mixed-mode loading can be characterized in terms of the mixity parameter pM  which is 

defined as ( ) ( ) ( )
0

2 / arctan lim , 0 / , 0 .p
r

r
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→
= = =  

The mixity parameter pM equals 0 for pure mode II; 1 for pure mode I, and 0 1pM< <  for 
different mixities of modes I and II. Thus, for combine-mode fracture the mixity parameter pM  
completely specifies the near-crack-tip fields for a given value of the creep exponent. By postulating 
the Airy stress function ( ),rχ θ  expressed in the polar coordinate system, the stress components state 

are expressed as: ,rrθθσ χ= , 2, / , /rr r r rθθσ χ χ= + , ( ), / ,r rrθ θσ χ= − . As for the asymptotic stress 
field at the crack tip 0r → , one can postulate the Airy stress function and the continuity parameter as  
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 First consider the leading terms of the asymptotic expansions for the integrity parameter: 
1( , ) ( )r r fλχ θ θ+= , 1ψ = , where λ  is indeterminate exponent and ( )f θ  is an indeterminate function of 

the polar angle, respectively. In view of the asymptotic presentation for the Airy stress potential the 
asymptotic stress field at the crack tip is derived as follows 1( , ) ( )ij ijr rλσ θ σ θ−=  , where 1λ −  denotes 
the exponent representing the singularity of the stress field, and will be called the stress singularity 
exponent hereafter. The asymptotic strain field as 0r →  takes the form ( 1)( , ) ( ).n

ij ijr Br λε θ ε θ−=   The 
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compatibility condition results in the nonlinear forth-order ordinary differential equation (ODE) for 
the function ( )f θ : 
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where the following notations are adopted 
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Thus the eigenfunction expansion method results in the nonlinear eigenvalue problem: it is 
necessary to find eigenvalues λ  leading to nontrivial solutions of the nonlinear differential equation 
obtained satisfying the boundary conditions. Therefore, the order of the stress singularity is the 
eigenvalue and the angular variations of the field quantities correspond to the eigenfunctions. When 
we consider mode I loading or mode II loading conditions symmetry or antisymmetry requirements of 
the problem with respect to the crack plane at 0θ =  are utilized. Due to the symmetry (or 
antisymmetry) the solution is sought for one of the half-planes. In analyzing the crack problem under 
mixed-mode loading conditions the symmetry or antisymmetry arguments can not be used and it is 
necessary to seek for the solution in the whole plane π θ π− ≤ ≤ . To find the numerical solution one 
has to take into account the value of the mixity parameter. For this purpose in the framework of the 
proposed technique the nonlinear ordinary differential equation obtained is numerically solved on the 
interval [ ]0,π  and the two-point boundary value problem is reduced to the initial problem with the 
initial conditions reflecting the value of the mixity parameter 

( 0) 1,f θ = = ( ) ( )( 0) 1 / / 2 ,pf tg Mθ λ π′ = = +  ( ) 0,f θ π= =  ( ) 0.f θ π′ = =  
The first initial condition is the normalization condition. The second condition follows from the 

value of the mixity parameter specified. At the next step the numerical solution of Eq. 6 is found on 
the interval [ ],0π−  with the following boundary conditions 

( ) 0,f θ π= − = ( ) 0,f θ π′ = − =  ( 0) 1,f θ = =  ( ) ( )( 0) 1 / / 2 .pf tg Mθ λ π′ = = +  

3. Numeric solution 
The analogous approach has been realized in [8] where the near mixed-mode crack-tip stress field 

under plane strain conditions was analyzed. It is assumed that the eigenvalue of the problem 
considered equals the eigenvalue of the classical HRR problem /( 1)n nλ = + . However, it turns out that 
when we construct the numerical solution for the mixed-mode crack problem the radial stress 
component ( , )rr rσ θ  has discontinuity at 0θ =  whereas for the cases of pure mode I and pure mode II 
loadings when 1pM =  and 0pM =  are valid the radial stress component is continuous at 0θ = . 
Numerical analysis carried out previously for mixed-mode crack problem under plane strain 
conditions leads to the continuous angular distributions of the radial stress component ( , 0)rr rσ θ =  [8]. 
Thus one can compute the whole set of eigenvalues for plane stress conditions from the continuity 
requirements of the radial stress components on the line extending the crack. In accordance with the 
procedure proposed the spectrum of the eigenvalues λ  is numerically obtained. Results of 
computations are shown in Table 1 where the new eigenvalues λ  computed and the values of the 
functions ( 0)f θ′′ = , ( 0)f θ′′′ = , ( )f θ π′′ = −  and ( )f θ π′′′ = −  numerically obtained for the different 
values of the mixity parameter pM  and the creep exponent n  are given. The angular distributions of 
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the stress components for different values of creep exponent n  and for all values of the mixity 
parameter pM are shown in Fig. 1. 

 

 
Figure 1. Angular distributions of the stress components for different values of the mixity parameter. 

Table 1. Eigenvalues for different values of mixity parameter for plane stress onditions 2n =  
pM  λ  ( 0)f θ′′ =  ( 0)f θ′′′ =  ( )f θ π′′ = −  ( )f θ π′′′ = −  

0.9 -0.30032000   -0.25428500   -0.52319280   0.36781000   0.41793000 

0.8   -0.28609000   0.30988600   -0.65543910   -0.14222000   1.23657500 

0.7 -0.26789000   -0.40297913  -0.80444475   -0.37921000   0.54939150 

0.6   -0.26093000   -0.46493199   1.03847110   -0.54340000   0.46094200 

0.5   -0.25233200   -0.52217930   -1.40075019   -0.72780000   0.42459230 

0.4   -0.24369800   -0.57136233   -1.98711539   -0.97155000   0.40989380 

0.3   -0.23701900   -0.61089207   -2.95625279   -1.35116000   0.41294900 

0.2   -0.23247900   -0.64000914   -4.76598544   -2.08610169   0.44422935 

0.1   -0.22987230   -0.65774480   -9.82544937   -4.26300089   0.57184713 

The method proposed has been applied to nonlinear eigenvalue problems arising from the problem 
of the determining the near crack-tip fields in the damaged materials. In continuum damage mechanics 
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(Altenbach and  Sadowski (2015), Murakami (2012), Kuna (2013), Voyiadis (2015), Voyiadis and 
Kattan (2012), Zhang and Cai (2010)), the damage state at an arbitrary point in the material is 
represented by a properly defined integrity variable. The integrity parameter reaches its critical value 
at fracture. According to this notion, a crack in a fracture process can be modeled with the concept of a 
completely damaged zone in the vicinity of the crack tip. Namely a crack can be represented by a 
region where the integrity state has attained to its critical state, i.e., by the completely damaged zone 
(CDZ). Then the development of the crack and its preceding damage can be elucidated by analyzing 
the local states of stress, strain and damage. 

The CDZ may be interpreted as the zone of critical decrease in the effective area due to damage 
development. Inside the completely damaged zone the damage involved reaches its critical value (for 
instance, the damage parameter reaches unity) and a complete fracture failure occurs. In view of 
material damage stresses are relaxed to vanishing (Stepanova and Igonin (2014), Stepanova and 
Adulina (2014), Stepanova and Yakovleva (2014)). Therefore, one can assume that the stress 
components in the CDZ equal zero. Outside the zone damage alters the stress distribution substantially 
compared to the corresponding non-damaging material. Well outside the CDZ the continuity 
parameter is equal to 1. Therefore asymptotic remote boundary conditions have the form 

 
4. Conclusions 
Asymptotic crack-tip fields in damaged materials are developed for a stationary plane stress crack 
under mixed mode loading. The asymptotic solution is obtained by the use of the similarity variable. 
On the basis of the similarity variable and the self-similar representation of the solution the near crack-
tip stress, creep strain rate and continuity distributions are given. It is shown that meso-mechanical 
effect of damage accumulation near the crack tip results in new intermediate stress field asymptotic 
behavior and requires the solution of nonlinear eigenvalue problems. To attain eigensolutions a 
numerical scheme is worked out and the results obtained provide the additional eigenvalues of the 
HRR problem. By the use of the method proposed the whole set of eigenvalues for the mode crack in a 
power law material under mixed mode loading can be determined. The self-similar solutions are based 
on the idea of the existence of the completely damaged zone near the crack tip. The higher order terms 
of the asymptotic expansions of stresses, creep strain rates and continuity parameter allowing to 
construct the contours of the completely damaged zone in the vicinity of the crack tip are derived and 
investigated. 
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