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Abstract. The most popular algorithm for aligning of 3D point data is the Iterative Closest 
Point (ICP). This paper proposes a new algorithm for orthogonal registration of point clouds 
based on the point-to-plane ICP algorithm for affine transformation. At each iterative step of 
the algorithm, an approximation of the closed-form solution for the orthogonal transformation 
is derived. 
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1. Introduction 
The Iterative Closest Point (ICP) algorithm [1,2] has become the dominant method for aligning three 
dimensional models based purely on the geometry. For alignment it is necessary to find a geometric 
transformation that connects two point clouds in ℝ3 by the best way with respect to the 𝐿𝐿2 norm. The 
ICP algorithm consists of two main stages: 

1. Searching of corresponding points (pairs) in two clouds; 
2. Minimizing the error metric (variational subproblem of the ICP).  
There are two basic approaches to choosing the error metric for pairs of points. Within the point-to-

point approach [1],  the distance between the elements of the pair in ℝ3 is used. Within the point-to-
plane approach [2] the distance between the point of the first cloud and the tangent plane to the 
corresponding point of the second cloud is used.  

The key point [3] of the ICP algorithm is the search of either an orthogonal or affine 
transformations, best in the sense of a quadratic metric that combines two point clouds with a given 
correspondence between points (the variational subproblem of the ICP algorithm).  

For the point-to-point metric in the case of orthogonal transformations, the solution in a closed-
form was obtained by Horn [4,5]. The solution [4] is based on the use of quaternions, whereas the 
solution [5] uses orthogonal matrices. The solutions are linear in time with respect to the number of 
point pairs. The original ICP algorithm is widely used for the rigid objects registration, but it does not 
work well for the case of the non-rigid objects. An extension of the ICP algorithm is proposed [6], 
using scaling in addition to rotation and translation. A generalization of this algorithm to the case of an 



 
Обработка изображений и дистанционное зондирование Земли                A. Makovetskii et al. 

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018)         940 

arbitrary affine transformation was done [7,8]. A closed-form solution to the point-to-point problem 
was derived [9-11].  

The above mentioned approaches for solving the variational subproblem of the ICP algorithm are 
based on the point-to-point metric. The point-to-plane metric has been shown to perform better than 
the point-point metric in terms of accuracy and convergence rate [12].  A closed-form solution to the 
point-to-plane case for orthogonal transformations is an open problem. Instead, iterative methods 
based on the linear least-squares optimization or closed-form methods for small angles only are often 
used [9]. Iterative solutions require an initial approximate estimate of the transformation parameters, 
and the iterations might converge slowly, converge to a local optimum or not converge at all.  

In [13,14] a closed-form solution to the point-to-plane problem for an arbitrary affine 
transformation is proposed.  The affine approach works well when the correspondence between point 
clouds is good. In this case, the affine point-to-plane method precisely reconstructs original geometric 
transformation for arbitrary affine transformations, in particular for orthogonal transformations 
[13,14]. When a correspondence between clouds is not sufficiently good, the affine approach cannot 
reconstructs an original orthogonal transformation.  

In this paper, we propose an approximation of a closed-form solution to the point-to-plane problem 
for orthogonal transformation. The method is based on the closed-form solution for the affine point-to-
plane problem [13,14], matrix polar decomposition and the Horn’s method for calculating the nearest 
orthonormal matrix [5]. The proposed method does not require an initial approximate estimate. 
Computer simulation results are provided to illustrate the performance of the proposed method of 
solving the minimization problem.   
 
2. Closed-form solution for affine point-to-plane problem 
Let 𝑃𝑃 = {𝑝𝑝1, … ,𝑝𝑝𝑛𝑛}  be a source point cloud, and 𝑄𝑄 = {𝑞𝑞1, … , 𝑞𝑞𝑛𝑛}  be a destination point cloud in ℝ3. 
Suppose that the relationship between points in  𝑃𝑃 and 𝑄𝑄 is given in such a manner that for each point 
𝑝𝑝𝑖𝑖 exists a corresponding point 𝑞𝑞𝑖𝑖. The ICP algorithm is commonly considered as a geometrical 
transformation for rigid objects mapping 𝑃𝑃 to 𝑄𝑄: 

𝑅𝑅𝑝𝑝𝑖𝑖 + 𝑡𝑡,                                                                                      (1) 
where 𝑅𝑅 is a rotation matrix,  𝑡𝑡 is a translation vector, 𝑖𝑖 = 1, … ,𝑛𝑛.  
 The group of affine transformations in the dimension of three has 12 generators. It means that the 
affine transformation in the dimension of three is a function of 12  variables. Let us consider the ICP 
variational problem for an arbitrary affine transformation in the point-to-plane case. Denote by 𝑆𝑆(𝑄𝑄) a 
surface constructed from the cloud 𝑄𝑄, by 𝑇𝑇(𝑞𝑞𝑖𝑖) denote a tangent plane of 𝑆𝑆(𝑄𝑄) at point 𝑞𝑞𝑖𝑖. Let 𝐽𝐽(𝐴𝐴,𝑇𝑇) 
be the following function: 

 𝐽𝐽(𝐴𝐴) = ∑ (< 𝐴𝐴 𝑝𝑝𝑖𝑖 −   𝑞𝑞𝑖𝑖,𝑛𝑛𝑖𝑖 > )2𝑛𝑛
𝑖𝑖=1 ,                                                          (2) 

where <∙,∙> denotes the inner product,  𝐴𝐴 is a matrix of an affine transformation in the homogenous 
coordinates: 

 𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑡𝑡1
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑡𝑡2
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑡𝑡3

0 0 0 1

�,                                                          (3) 

𝑝𝑝𝑖𝑖 is a point from the cloud 𝑃𝑃, 𝑛𝑛𝑖𝑖 is the unitary normal for 𝑇𝑇(𝑞𝑞𝑖𝑖):  

𝑝𝑝𝑖𝑖 = 

⎝

⎜
⎛
𝑝𝑝1𝑖𝑖

𝑝𝑝2𝑖𝑖

𝑝𝑝3𝑖𝑖
1 ⎠

⎟
⎞

,        𝑛𝑛𝑖𝑖 = 

⎝

⎜
⎛
𝑛𝑛1𝑖𝑖

𝑛𝑛2𝑖𝑖

𝑛𝑛3𝑖𝑖
0 ⎠

⎟
⎞

.                                                                 (4) 

 The ICP variational problem can be stated as follows: 
     arg𝑚𝑚𝑖𝑖𝑛𝑛𝐴𝐴 𝐽𝐽(𝐴𝐴) .                                                       (5) 
 The solution of the problem (5) is given by the following way [13,14]:  
 𝑀𝑀𝐴𝐴 = 𝐶𝐶.                                                                              (6) 
 𝑀𝑀 is the coefficients matrix 12 × 12: 
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𝑀𝑀𝑗𝑗 = �𝑚𝑚11
𝑗𝑗 𝑚𝑚21

𝑗𝑗 𝑚𝑚31
𝑗𝑗 𝑚𝑚41

𝑗𝑗 𝑚𝑚12
𝑖𝑖 𝑚𝑚22

𝑗𝑗 𝑚𝑚32
𝑗𝑗 𝑚𝑚42

𝑗𝑗 𝑚𝑚13
𝑗𝑗 𝑚𝑚23

𝑗𝑗 𝑚𝑚33
𝑗𝑗 𝑚𝑚43

𝑗𝑗 �,  
 𝑗𝑗 = 1, … ,3,                   (7) 

 𝑚𝑚𝑘𝑘𝑘𝑘
𝑗𝑗 = ∑ (𝑛𝑛𝑗𝑗𝑃𝑃𝑃𝑃)𝑘𝑘𝑘𝑘𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 𝑘𝑘, 𝑙𝑙 = 1, … ,4, 𝑗𝑗 = 1, … ,3,                                                (8) 

   (𝑛𝑛𝑗𝑗𝑃𝑃𝑃𝑃)𝑖𝑖 =

⎝

⎜⎜
⎛
𝑝𝑝1𝑖𝑖𝑛𝑛1𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑝𝑝1𝑖𝑖𝑛𝑛2𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑝𝑝1𝑖𝑖𝑛𝑛3𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 0
𝑝𝑝2𝑖𝑖 𝑛𝑛1𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑝𝑝2𝑖𝑖 𝑛𝑛2𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑝𝑝2𝑖𝑖 𝑛𝑛3𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 0
𝑝𝑝3𝑖𝑖 𝑛𝑛1𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑝𝑝3𝑖𝑖 𝑛𝑛2𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑝𝑝3𝑖𝑖 𝑛𝑛3𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 0
𝑛𝑛1𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑛𝑛2𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 𝑛𝑛3𝑖𝑖 𝑛𝑛𝑗𝑗𝑖𝑖 0⎠

⎟⎟
⎞

, 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 1, … ,3,                       (9) 

𝑀𝑀3𝑖𝑖+𝑗𝑗 = �𝑚𝑚11
𝑖𝑖𝑗𝑗 𝑚𝑚21

𝑖𝑖𝑗𝑗 𝑚𝑚31
𝑖𝑖𝑗𝑗 𝑚𝑚41

𝑖𝑖𝑗𝑗 𝑚𝑚12
𝑖𝑖𝑖𝑖 𝑚𝑚22

𝑖𝑖𝑗𝑗 𝑚𝑚32
𝑖𝑖𝑗𝑗 𝑚𝑚42

𝑖𝑖𝑗𝑗 𝑚𝑚13
𝑖𝑖𝑗𝑗 𝑚𝑚23

𝑖𝑖𝑗𝑗 𝑚𝑚33
𝑖𝑖𝑗𝑗 𝑚𝑚43

𝑖𝑖𝑗𝑗 �, 
𝑖𝑖, 𝑗𝑗 = 1, … ,3,                            (10) 
𝑚𝑚𝑘𝑘𝑘𝑘
𝑖𝑖𝑗𝑗 = ∑ (𝑝𝑝𝑗𝑗𝑛𝑛𝑖𝑖𝑃𝑃𝑃𝑃)𝑘𝑘𝑘𝑘𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 𝑘𝑘, 𝑙𝑙 = 1, … ,4, 𝑖𝑖, 𝑗𝑗 = 1, … ,3,                                           (11) 

(𝑝𝑝𝑗𝑗𝑛𝑛𝑖𝑖𝑃𝑃𝑃𝑃)𝑘𝑘 =

⎝

⎜⎜
⎛
𝑝𝑝1𝑘𝑘𝑛𝑛1𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑝𝑝1𝑘𝑘𝑛𝑛2𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑝𝑝1𝑘𝑘𝑛𝑛3𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 0
𝑝𝑝2𝑘𝑘𝑛𝑛1𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑝𝑝2𝑘𝑘𝑛𝑛2𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑝𝑝2𝑘𝑘𝑛𝑛3𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 0
𝑝𝑝3𝑘𝑘𝑛𝑛1𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑝𝑝3𝑘𝑘𝑛𝑛2𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑝𝑝3𝑘𝑘𝑛𝑛3𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 0
𝑛𝑛1𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑛𝑛2𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 𝑛𝑛3𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 0⎠

⎟⎟
⎞

, 𝑘𝑘 = 1, … ,𝑛𝑛, 𝑖𝑖, 𝑗𝑗 = 1, … ,3.              (12) 

𝐶𝐶 is the coefficients column with 12 elements: 
𝑐𝑐𝑗𝑗 = ∑ 𝑛𝑛𝑗𝑗𝑖𝑖  < 𝑞𝑞𝑖𝑖,𝑛𝑛𝑖𝑖 >𝑛𝑛

𝑖𝑖=1 , 𝑗𝑗 = 1, … ,3,                                                              (13) 
𝑐𝑐3𝑖𝑖+𝑗𝑗 = ∑ 𝑝𝑝𝑗𝑗𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘  < 𝑞𝑞𝑘𝑘,𝑛𝑛𝑘𝑘 >𝑛𝑛

𝑘𝑘=1 , 𝑖𝑖, 𝑗𝑗 = 1, … ,3.                                                 (14) 
𝐴𝐴 is the column of variables with 12 elements: 
𝐴𝐴 = (𝑎𝑎11 𝑎𝑎12 𝑎𝑎14 𝑎𝑎14 = 𝑡𝑡1 𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24 = 𝑡𝑡2 𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34 = 𝑡𝑡3) 𝑡𝑡.     (15) 
 The reconstructed affine transform is done by the following formula: 

 𝐴𝐴 = 𝑀𝑀−1𝐶𝐶.                                                                      (16) 

3. Polar decomposition and orthogonal transformations 
A square matrix M can be decomposed into the product of an orthonormal matrix R and a positive 
semi-definite matrix S [5]. The matrix S is always uniquely determined. The matrix R is uniquely 
determined when M is nonsingular. When M is nonsingular, we can actually write directly [5]: 

𝑀𝑀 = 𝑅𝑅𝑆𝑆,                              (17) 
𝑅𝑅 = 𝑀𝑀(𝑀𝑀𝑡𝑡𝑀𝑀)−

1
2.                             (18) 

 The matrix 𝑀𝑀𝑡𝑡𝑀𝑀 is a positive semi-definite and a symmetric. The orthogonal matrix 𝑅𝑅 in (18) can 
be computed by the following way [5]: 

𝑅𝑅 = 𝑀𝑀𝐶𝐶

⎝

⎜
⎛

1
�𝜆𝜆1

0 0

0 1
�𝜆𝜆2

0

0 0 1
�𝜆𝜆3⎠

⎟
⎞
𝐶𝐶𝑡𝑡,                            (19) 

where  𝐶𝐶 is orthogonal matrix consisting of  columns, that are eigenvectors of the  matrix 𝑀𝑀𝑡𝑡𝑀𝑀. 
Numbers 𝜆𝜆𝑖𝑖, 𝑖𝑖 = 1, … ,3, are eigenvalues of the  matrix 𝑀𝑀𝑡𝑡𝑀𝑀. The formula (18) also defines [5] a 
nearest orthogonal matrix 𝑅𝑅 for the nonsingular matrix 𝑀𝑀. It means that the  formula (18) describes the 
projection from the group 𝑆𝑆𝐿𝐿(3)  to the subgroup 𝑆𝑆𝑆𝑆(3).    

4. Projection on 𝑺𝑺𝑺𝑺(𝟑𝟑)    
For approximation of the exact solution of the problem (5) we propose the following method. At each 
step of the ICP algorithm, we project a top-left submatrix 3 × 3 of a matrix 𝐴𝐴 of an affine transform, 
computed by the formula (16),  to 𝑆𝑆𝑆𝑆(3) by the formula (19).  After that it is necessary to recalculate a 
translation 𝑡𝑡 = (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3) 𝑡𝑡.  
 Denote by 𝑅𝑅 a result of projection of a top-left submatrix 3 × 3 of a matrix 𝐴𝐴 to 𝑆𝑆𝑆𝑆(3).  Denote by 
𝑃𝑃 the following matrix 𝑛𝑛 × 3:  
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𝑃𝑃 = �
𝑛𝑛11 𝑛𝑛21 𝑛𝑛31

…
𝑛𝑛1𝑛𝑛 𝑛𝑛2𝑛𝑛 𝑛𝑛1𝑛𝑛

�,                             (20) 

denote by 𝑣𝑣 the following vector-column 𝑛𝑛 × 1:  
𝑣𝑣𝑖𝑖 =< 𝑞𝑞𝑖𝑖 − 𝑅𝑅𝑝𝑝𝑖𝑖,𝑛𝑛𝑖𝑖 >.                                                                (21) 

Then the problem 
∑ (< 𝑅𝑅 𝑝𝑝𝑖𝑖 + 𝑡𝑡 −   𝑞𝑞𝑖𝑖,𝑛𝑛𝑖𝑖 > )2𝑛𝑛
𝑖𝑖=1 = ∑ (< 𝑡𝑡,𝑛𝑛𝑖𝑖 > −<   𝑞𝑞𝑖𝑖 − 𝑅𝑅 𝑝𝑝𝑖𝑖 ,𝑛𝑛𝑖𝑖 > )2𝑛𝑛

𝑖𝑖=1 → min𝑡𝑡 ,             (22)  
is the least squares problem for the equation: 

𝑃𝑃𝑡𝑡 = 𝑣𝑣.                                                                             (23) 
Thus we have: 

 𝑡𝑡 = (𝑃𝑃𝑡𝑡𝑃𝑃)−1𝑃𝑃𝑡𝑡𝑣𝑣.                                                                  (24)   

5. Computer simulation 
We consider two variants of the ICP algorithm here. The first is point-to-point ICP based on Horn 
algorithm. The second is point-to-plane ICP based on the proposed approximation of an exact solution 
of the variational problem. Other elements of ICP algorithm are same. 
 1. Let 𝑃𝑃 be the cloud consisting of 34817 points, see figure 1 (blue colour). The cloud 𝑄𝑄 (green 
colour) is obtained from  𝑃𝑃  by the orthogonal transformation 𝑄𝑄 = 𝑇𝑇1 ∗ 𝑃𝑃, where 𝑇𝑇1 is given by  

𝑇𝑇1 = �

1.00000 0.00000  0.00000 3.10000
0.00000  0.83867 −0.54464 1.13270
0.00000 0.54464 0.83867 1.92795
0.00000 0.00000 0.00000 1.00000

�.                                   (25) 

 Computed by the proposed method transformation 𝑀𝑀1 is given as 

𝑀𝑀1 = �

1.00000 0.00000  0.00000 3.10000
0.00000  0.83867 −0.54464 1.13270
0.00000 0.54464 0.83867 1.92795
0.00000 0.00000 0.00000 1.00000

�.                                   (26) 

 The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 
point-to-point ICP method converges in 31 iterations, work time 1745 milliseconds. The proposed ICP 
method converges in 10 iterations, work time 913 milliseconds.  

 
Figure 1. Cloud 𝑃𝑃 (blue), cloud 𝑄𝑄 (green).    Figure 2. Cloud 𝑃𝑃′ = 𝑀𝑀1 ∙ 𝑃𝑃 (blue), cloud 𝑄𝑄 (green). 
 
 Figure 1 shows the clouds  𝑃𝑃 (blue) and 𝑄𝑄 (green), figure 2 shows the clouds  𝑃𝑃′ = 𝑀𝑀1 ∙ 𝑃𝑃 (blue) 
and 𝑄𝑄 (green) together. 
 2. Let 𝑃𝑃 be the cloud consisting of 34817 points, see figure 3 (blue colour). The cloud 𝑄𝑄 (green 
colour) is obtained from  𝑃𝑃  by the orthogonal transformation 𝑄𝑄 = 𝑇𝑇2 ∗ 𝑃𝑃, where 𝑇𝑇1 is given by  

  𝑇𝑇2 = �

0.91015 −0.36772  0.19081 −0.79646
0.21782 0.81653 0.53463 2.18083
−0.35240 −0.44503 0.82326 2.41239
0.00000 0.00000 0.00000 1.00000

�.                               (27) 

 Computed by the proposed method transformation 𝑀𝑀2 is given as 



 
Обработка изображений и дистанционное зондирование Земли                A. Makovetskii et al. 

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018)         943 

𝑀𝑀2 = �

0.91015 −0.36772  0.19081 −0.79646
0.21782 0.81653 0.53463 2.18083
−0.35240 −0.44503 0.82326 2.41239
0.00000 0.00000 0.00000 1.00000

�.                              (28) 

 The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 
point-to-point ICP method converges in 41 iterations, work time 2458 milliseconds. The proposed ICP 
method converges in 16 iterations, work time 1491 milliseconds.  

 
Figure 3. Cloud 𝑃𝑃 (blue), cloud 𝑄𝑄 (green).     Figure 4. Cloud 𝑃𝑃′ = 𝑀𝑀2 ∙ 𝑃𝑃 (blue), cloud 𝑄𝑄 (green). 
 
 Figure 3 shows the clouds  𝑃𝑃 (blue) and 𝑄𝑄 (green), figure 4 shows the clouds  𝑃𝑃′ = 𝑀𝑀2 ∙ 𝑃𝑃 (blue) 
and 𝑄𝑄 (green) together. 
 3. Let 𝑃𝑃 be the cloud consisting of 34817 points, see figure 5 (blue colour). The cloud 𝑄𝑄 (green 
colour) is obtained from  𝑃𝑃  by the orthogonal transformation 𝑄𝑄 = 𝑇𝑇3 ∗ 𝑃𝑃, where 𝑇𝑇3 is given by  

 𝑇𝑇3 = �

0.98163 0.00000  −0.19081 −0.64070
0.03641 0.98163 0.18730 0.03261
0.18730 −0.19081 0.96359 1.21591
0.00000 0.00000 0.00000 1.00000

�.                               (29) 

 Computed by the proposed method transformation 𝑀𝑀1 is given as 

 𝑀𝑀3 = �

0.98163 0.00000  −0.19081 −0.64070
0.03641 0.98163 0.18730 0.03261
0.18730 −0.19081 0.96359 1.21591
0.00000 0.00000 0.00000 1.00000

�.                              (30) 

 The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 
point-to-point ICP method converges in 19 iterations, work time 984 milliseconds. The proposed ICP 
method converges in 9 iterations, work time 747 milliseconds.  

 
Figure 5. Cloud 𝑃𝑃 (blue), cloud 𝑄𝑄 (green).    Figure 6. Cloud 𝑃𝑃′ = 𝑀𝑀3 ∙ 𝑃𝑃 (blue), cloud 𝑄𝑄 (green). 
 
 Figure 5 shows the clouds  𝑃𝑃 (blue) and 𝑄𝑄 (green), figure 6 shows the clouds  𝑃𝑃′ = 𝑀𝑀3 ∙ 𝑃𝑃 (blue) 
and 𝑄𝑄 (green) together. 
 4. Let 𝑃𝑃 be the cloud consisting of 106289 points, see figure 7 (blue colour). The cloud 𝑄𝑄 (green 
colour) is obtained from  𝑃𝑃  by the orthogonal transformation 𝑄𝑄 = 𝑇𝑇4 ∗ 𝑃𝑃, where 𝑇𝑇4 is given by  
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𝑇𝑇4 = �

0.83867  0.54464  −0.00000  1.38331
−0.45677 0.70337 −0.54464 −0.29804
−0.29663 0.45677 0.83867 0.99881
0.00000 0.00000 0.00000 1.00000

�.                               (31) 

 Computed by the proposed method transformation 𝑀𝑀4 is given as 

 𝑀𝑀4 = �

0.83867  0.54464  −0.00000  1.38331
−0.45677 0.70337 −0.54464 −0.29804
−0.29663 0.45677 0.83867 0.99881
0.00000 0.00000 0.00000 1.00000

�.                              (32) 

 The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 
point-to-point ICP method converges in 24 iterations, work time 6316 milliseconds. The proposed ICP 
method converges in 16 iterations, work time 5792 milliseconds.  

 
Figure 7. Cloud 𝑃𝑃 (blue), cloud 𝑄𝑄 (green).    Figure 8. Cloud 𝑃𝑃′ = 𝑀𝑀4 ∙ 𝑃𝑃 (blue), cloud 𝑄𝑄 (green). 
 
 Figure 7 shows the clouds  𝑃𝑃 (blue) and 𝑄𝑄 (green), figure 8 shows the clouds  𝑃𝑃′ = 𝑀𝑀4 ∙ 𝑃𝑃 (blue) 
and 𝑄𝑄 (green) together. 
 5. Let 𝑃𝑃 be the cloud consisting of 204581 points, see figure 9 (blue colour). The cloud 𝑄𝑄 (green 
colour) is obtained by a some displacement of the sensor relative to the original position. Computed by 
the proposed method transformation 𝑀𝑀5 is given as 

  𝑀𝑀5 = �

0.99929   −0.03544  0.01241 −15.71638
0.03629 0.99635 −0.07725 99.11755
−0.00963 0.07764 0.99693 34.14180
0.00000 0.00000 0.00000 1.00000

�.                       (33) 

 Computed by the by the point-to-point ICP transformation 𝑀𝑀6 is given as 

   𝑀𝑀6 = �

0.99910   −0.04117  0.01045  −15.63943
0.04182 0.99650 −0.07232 102.61971
−0.00744 0.07269 0.99733 36.99452

0.00000 0.00000 0.00000 1.00000

�.                       (34) 

 

 
Figure 9. Cloud 𝑃𝑃 (blue), cloud 𝑄𝑄 (green).  Figure 10. Cloud 𝑃𝑃′ = 𝑀𝑀5 ∙ 𝑃𝑃 (blue), cloud 𝑄𝑄 (green). 
 
 The point-to-point ICP method converges in 36 iterations, work time 10845 milliseconds. The 
proposed ICP method converges in 14 iterations, work time 5415 milliseconds. 
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 Figure 9 shows the clouds  𝑃𝑃 (blue) and 𝑄𝑄 (green), figure 10 shows the clouds  𝑃𝑃′ = 𝑀𝑀5 ∙ 𝑃𝑃 (blue) 
and 𝑄𝑄 (green) together. 

6. Conclusion 
In this paper, we revised error minimizing steps of the ICP algorithm. A new algorithm for orthogonal 
registration of point clouds based on the point-to-plane ICP algorithm for affine transformation is 
proposed. At each iterative step of the algorithm, an approximation of the closed-form solution for the 
orthogonal transformation is derived. 
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