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Abstract—Approaches to improving the efficiency of network
attack detection algorithms in heterogeneous industrial
networks based on machine learning technologies are
considered. An algorithm for analyzing and processing network
traffic has been developed in the task of detecting malicious
network activity. The Electra dataset is used to train the
proposed machine learning models and heterogeneous neural
network models.
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1. INTRODUCTION

At the present stage of digital transformation of the
industry [1], there is a trend towards the integration of
Industrial Internet of Things (lloT) devices with traditional
data collection and control systems and deep penetration of
10T into critical infrastructure, which has led to an increase in
the likelihood and number of potential cyber attacks on
industrial facilities.

To detect multi-step network attacks on industrial systems,
it is necessary to analyze a significant amount of incoming,
outgoing and local network traffic with the ability to compare
it with the information security event stream to detect
anomalous activity [2].

Attacks using exploits practically do not change the main
characteristics of industrial protocol traffic, which makes it
very difficult to select signatures for their detection [3]. The
use of machine learning (ML) methods makes it possible to
identify the features of anomalous traffic and build an
appropriate mechanism for their detection [4, 5].

The aim of the work is to improve the efficiency of
algorithms for detecting network attacks in a heterogeneous
industrial network based on ML technologies.

2. ALGORITHM FOR DETECTING NETWORK ATTACKS IN A
HETEROGENEOUS INDUSTRIAL NETWORK

The algorithm for analyzing network traffic parameters in
the task of detecting anomalies and malicious network activity
based on the use of ML-models is shown in Fig. 1. The main
stages of data collection and processing for the construction
and use of ML-models are presented.

In order to evaluate the effectiveness of the proposed
solution, the Electra dataset [6] was used, generated from the
network traffic of a traction electrical substation operating in
normal mode and under attack conditions.

To accomplish its task, the electric traction substation
consists of 5 PLCs, a SCADA system, a switch and a firewall.
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All communications between components are implemented by
Modbus and S7comm over TCP/IP.
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Fig. 1.Generalized network traffic mining algorithm

Electra includes three types of attacks: false data injection,
replay, and reconnaissance. Electra is the only dataset available
that includes replay attacks. There are two different data sets,
one for each Modbus and S7comm communication protocol.
The structure of the test bench is shown in Fig. 2.
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Fig. 2. The structure of the stand for collecting network traffic (Al (Nanobox)
and A4 (HMI) form a SCADA master for Modbus PLC slaves A2 and
A3. D1 (PLC) slave for STComm Al slaves and PLCs D2 and D3. D4
— firewall, D5 — switch for connecting devices)
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Electra Modbus and Electra S7comm collected network
traffic for 12 hours of operation of the stand (Fig. 3), while
94% and 98% of the records correspond to normal operation.
The data set contains 387 million records for S7Comm (36.8
GB) and 16 million records for Modbus (1.5 GB). Table 1
shows features of network sessions recorded during traffic
collection.

TABLE 1. FEATURES OF NETWORK SESSIONS

Features Description Data type

time Timestamp string

smac Source MAC address string

dmac Destination MAC address string

sip Source IP string

dip Destination IP address string

request Indicates if the packet is a request (master-to- | boolean

q slave packet)

fc Function code integer

error Indicates whether there was an error in the | boolean
read/write operation.

madd Memory address to perform a read/write | integer
operation

data Data field integer

label Label for attacks and normal patterns string
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Fig. 3. Distribution of the number of records corresponding to attacks and
normal operation
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Fig. 4. The histogram of the assessment of the significance of features (y-
axis — features), obtained using a classifier based on a committee of
decision trees (abscissa — relative units)

3. RESULTS OF THE COMPUTATIONAL EXPERIMENT

Evaluation of the significance of features in the problem of
multiclass classification makes it possible to single out those

features that are key to assigning a network session to a
particular class. Fig. 4 shows a histogram of the feature
significance assessment obtained using a classifier based on
the random forest classifier.

An ensemble of classifiers has been implemented, which
includes a committee of decision trees (RF), a classifier based
on the gradient boosting algorithm on an ensemble of decision
trees (XGBClassifier), and an ExtraTreesClassifier.
Committee parameters: voting type — “soft” (voting and
weighting model predictions for each class); model weights are
distributed as {2, 1, 3}.The accuracy metric for the ensemble
for the test sample is 0.975, the estimate of the F1- score is
0.964. The assessment of prec recall, F1-score and the number
of examples (support) by attack classes in the test sample are
shown in Table 2.

Ta6nuna 1L EVALUATION OF THE QUALITY OF MULTICLASS
CLASSIFICATION FOR A TEST SAMPLE OF AN ENSEMBLE OF CLASSIFIERS
attack classes precision | recall scFolr-e support
FORCE_ERROR_ATTACK 1.00 1.00 1.00 1043
MITM_UNALTERE 1.00 1.00 1.00 3488
NORMAL 1.00 1.00 1.00 7354
READ_ATTACK 0.84 1.00 0.91 3486
RECOGNITION_ATTACK 1.00 1.00 1.00 3528
REPLAY_ATTACK 1.00 0.03 0.06 686
RESPONSE_ATTACK 1.00 1.00 1.00 3546
WRITE_ATTACK 1.00 1.00 1.00 3469

4, CONCLUSION

Algorithms for intelligent analysis of scattering parameters
in the tasks of detecting malicious activity have been
developed. An ensemble of classifiers is built based on
traditional ML-models. The estimate of the F1- score when
working with test samples reaches 96.4%.
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