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Abstract. The paper developed a method for studying complex catalytic reactions
using optimization algorithms. At the first stage, an inverse kinetic problem of
recovering the values of unknown parameters is solved using single-purpose
optimization algorithms. At the second stage, on the basis of a kinetic model, a
problem of determining the optimal conditions for the reaction using multi-purpose
optimization algorithms is solved.

1. Introduction
In the study of complex catalytic reactions, optimization problems arise. For develop a
mathematical model of a chemical process, it is necessary to solve the problem of restoring kinetic
parameters, based on the correspondence of the calculated values concentrations of reagents to
experimental data. Based on the developed mathematical model, the problem of optimizing
conditions of the process, in accordance with the specified objective functions is solved.

2. Study of complex catalytic reactions by mathematical methods
In Fig. 1 shows the scheme for the study of complex catalytic reactions by mathematical
methods. For homogeneous catalytic reactions and reactions taking place at low pressures, it is
assumed that the process belongs to the Arrhenius kinetics [1]. When considering closed systems,
the state at stationary points obeys the law of effective masses [2]. Then for the components of
the system (chemical reaction reagents) the equations (1) are correct.

dxi
dt

=
J∑

j=1

νijwj(kj , xi), i = 1, ...I; kj = kj(k
0
j , Ej , T ); (1)

With initial conditions: t = 0, xi(0) = xi0;
where t reaction time, min; νij stoichiometric coefficients; J number of stages, xi concentrations of 
substances involved in the reaction, mol/L; I number of substances; wj j-th rate, 1/min; kj stage 
rate constants (normalized), 1/min; Ej activation energy of the stages, kcal/mol; T temperature, 
K; kj0 preexponential factor, 1/min.System (1) is a Cauchy problem [3]. Then under the direct 
problem should be considered the determination of unknown concentrations of substances as a
function of time at given rate
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Figure 1. Scheme for the study of complex catalytic reactions by mathematical methods.

constants (kj). Under the inverse problem is the determination of such rate constants, the
solution of system (1), with which it leads to xi values as close as possible to the experimental
data. Each inverse problem is a set of direct problems with given rate constants [4, 5, 6]. The
parameters of kinetic equations are rate constants and activation energies; it is necessary to
determine the condition for minimizing the functional (2) [7].

P∑
p=1

I∑
i=1

γi(x
e
pi − xrpi)→ min; (2)

where xepi, xrpi experimental and calculated values of component concentrations, γi weight 
coefficient, I number of substances, P number of measurement points in time of the observed
substances during reaction.
Thus, to build a mathematical model of a chemical reaction, the problem of optimizing kinetic 
parameters is solved (Fig. 1).
Based on a developed mathematical model, it is possible to determine an optimal conditions for 
the process. Depending on a specified optimization target functions, one of the optimization tasks 
is solved (Fig. 1):

a) If a single objective function is defined, then the problem of single-purpose optimization is 
solved.

b) If there is more than one mutually independent objective optimization function, then the 
multi-purpose optimization problem (MPO) is solved.

c) If it is possible to control the process under study in time with an influence on the criteria 
under consideration, then the optimal control problem is solved.
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3. Single-purpose optimization algorithms
When solving optimization problems, the following single-purpose optimization algorithms are 
used: global search (globalsearch) and multistart; Hook-Jeeves method (patternsearch); genetic 
algorithm; simulated annealing (simulatedannealing) and others [8]. These algorithms are both 
local and global. The global search is based on gradient calculation methods. The genetic 
algorithm imitates the principles of biological evolution. The simulation algorithm imitates the 
physical annealing process, seeking to improve the current minimum by slowly reducing the 
search volume.
When solving an optimization problem in chemistry, the main problem is that all theoretical 
optimization work investigated each criterion separately (product yield). Then, the next criterion 
was optimized (for example, the amount of reagents spent), etc. There were two different 
conditions for a chemical reaction (or more, if there were more than two optimized indicators). 
These states were the answer to the optimization question [9, 10]. It is worth noting that 
conditions for carrying out a reaction in these states were different, and in a sense, in themselves 
extreme, which indicated the impossibility of carrying out a chemical reaction in industry. Thus, 
in the future, when designing the reactor and chemical production as a whole, these conditions 
were not taken into account. An average was chosen that was a compromise for the quality 
criteria. The situation was even more complicated during the practical implementation, when the 
conditions for the purity of the experiment under laboratory conditions were practically 
unattainable. Thus, the value of an optimization itself in the laboratory tended to zero.

4. Algorithms for multipurpose optimization
But over the past decades, many effective evolutionary algorithms for multipurpose optimization 
have been proposed, which take into account all scientific developments in the field of Pareto-
dominance, genetic algorithms, and significantly increased the power of computing resources, 
which allows high-performance computing to be carried out in a reasonable time [11].
It should be noted that when talk about multipurpose optimization, it means a range of 
solutions, the values of which lie among Pareto solutions [12]. The decision maker (DM) is 
interested in a compromise solution, but it must be the best, based on mathematical calculations. 
That is, the points satisfying the solution must be unimprovable, in other words, nondominated 
[11].
The essence of the solution of the MPO by probing algorithms (for example, the grid algorithm) is 
to split the domain into small cells, then find the solution of the objective functions in each, then 
determine the non-dominated points (Pareto front) and the corresponding Pareto set [13]. The 
downside of the algorithm is that it will require large computing power and time-consuming. With 
an increase in the number of parameters, the grid algorithm is hardly applicable, since the costs 
increase significantly. The solution to the problem is the evolutionary algorithms for multicriteria 
optimization.
Vector estimation is one of the earliest evolutionary algorithms for solving multipurpose 
optimization problems. Here it is proposed to use a vector fitness function to select decision points 
(individuals). In this case, the step of selecting individuals is realized in the form of a cycle, where 
each time e corresponding part (the proportion of the population or subpopulations) is selected on 
the basis of each q criteria. Then an entire population is completely mixed up and crossing and 
mutation operators are applied. In the process of evolution, non-dominated individuals are 
identified in population, but this information is not used directly in the genetic algorithm. The 
vector method shown in Fig. 2 ensures the survival of best individuals in relation to each criterion 
and at same time increases the probability of multiple choice of individuals that are by criteria.
One of the earliest algorithms for multicriteria optimization is the Vector Evaluated Genetic 
Algorithm (VEGA) method (Schaffer D., 1985). This method is based on a fact that at each
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Figure 2. Vector selection of solutions in multipurpose optimization problem.

generation several subsets of individual parents are formed that participate in the reproduction 
of descendants. Each set is selected based on the suitability of individuals according to 
one criterion. Further, selected individuals are combined together to obtain a population of 
descendants using crossing and mutation operators. The main disadvantage of this method lies 
in a fact that obtained solutions accidentally fell into the Pareto-optimal solution, since the 
selection of individuals is oriented to the optimum by only one criterion.
The solution to the problem was suggested by Goldberg - ranking individuals [14, 15] it is ranked 
is 1 for all non-dominated individuals, which are removed from further consideration. Further, 
among the remaining individuals are non-dominated, which are assigned rank 2. This process 
continues until the entire population is ranked. The most effective method of the end of ., Based 
on ranking, is considered to be Non-dominated Sorting Genetic Algorithm (NSGA)(Srinivas and 
Deb, 1994) [16, 17]. The first non-dominated points (front) are considered, with which some value 
of the fitness function is assigned. Then these points are decomposed according to the given values 
and excluded from the subsequent similar procedures. And after each stage, the value less than 
the minimum decomposed value of the fitness function is assigned to all current non-dominated 
points (Fig. 3).

Figure 3. Ranking in NSGA method.
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A priori algorithms reduce the multipurpose task to a single-purpose optimization problem by
assigning the weights of the partial objective functions

F (X) =

|F |∑
ηlfl(X); (3)

l=1

where ηl - assigned weight coefficient, fl local objective functions, F objective functions vector, X 
control parameter vector.
Further development of multi-purpose optimization algorithms followed the path of improving
algorithms that were developed earlier. Algorithms SPEA2 [18], PESA-II [19], and Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [20] were created. The main development
followed the path of increasing diversity of individuals and using elitism to preserve the best
decisions. The NSGA-II method proved to be the most accurate in determining Pareto-dominant
points compared to others, although it also has drawbacks with an increase in a number of
criteria.
At the beginning of the algorithm, according to the principles of ranking, each individual is
assigned its own rank. Non-dominated points have the first rank, points that are dominated only
by points of the first rank have the second rank, etc. The crowding of the individuals obtained is
also estimated, the greater distance - the greater diversity of population. At each iteration, the
selection of descendants is based on the rank and crowding (proximity) of individuals. Later in the
iteration, the best points are chosen based on crossing, as well as mutations, which ensures
diversity of a next population. Parents and descendants are combined into one population with
best solutions, etc.
Also, undoubted advantage is high citation of the NSGA-II algorithm and its implementation in
many programming environments, in particular in Matlab software system (MATrix
LABoratore), which has found wide application for modeling chemical reactions, as well as
optimization. It includes expansion packages necessary for solving a wide variety of tasks that
require mathematical calculations and modeling [21].
For solving multipurpose problems in Matlab, the gamultiobj function was developed. It creates
many Pareto-optimal solutions. To find the optimum, a controlled genetic algorithm is used
(based on the NSGA-II algorithm). Both individuals with the best rank value (elitism) and
individuals are used to improve diversity of the fitness function (even if they have a lower rank). It
also uses a distance between individuals, displaying a distance for the Pareto border. It is possible
to set the number of populations, the number of individuals, the parameters of crossing and
mutations. There is also possibility of parallelization of calculations. All these advantages, as well
as some logical assumptions necessary when setting the starting conditions (for example, the
number of individuals may tend to infinity, but in applied problems, as a rule, there is no task of
finding the Pareto front with an accuracy of more than two decimal places) computing and the
need for computing power compared to non-population (grid) algorithms.
Thus, in the study of complex catalytic reactions by mathematical methods, optimization
problems arise that require the use of appropriate optimization algorithms [22, 23, 24]. The
optimization problem arises both when solving the inverse kinetic problem of recovering values
of unknown parameters, and when solving the problem of determining an optimal reaction
conditions based on a kinetic model. The application of optimization algorithms is also relevant
for chemical kinetics problems. It is especially advisable to use optimization for the analysis of
new chemical reactions.
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