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Abstract. A phase field formulation of microstructure evolution during laser powder-bed 
additive manufacturing process is presented taking into account coupled heat transfer, stress 
effects and atomic defects (vacancies and interstitials) generation at the moving liquid-solid 
interface. A kinetic equation for the phase field coupled to the temperature, the concentration 
of atomic defects, and the elastic displacement fields is derived based on first and second laws 
of thermodynamics. The phenomenon of flexural instability with the PD clustering (formation 
of micropores and dislocation loops) and its effect on the exfoliation of deposited layers on a 
substrate are also discussed. 

1.  Introduction 
Selective laser melting (SLM) is a popular powder-based additive manufacturing (AM) process for 
directly manufacturing of fully-dense metallic components. Nowadays, SLM is widely used in 
aerospace, biomedical, energy, and automotive industries [1, 2]. In powder-bed technology, parts are 
manufactured layer by layer, using a source of thermal energy to fuse the different layers together. In 
powder-bed technology, parts are manufactured layer by layer, using a source of thermal energy to 
fuse the different layers together. Laser powder bed fusion process has many parameters (power, scan 
velocity, layer thickness, etc.), that in combination with material properties and environmental 
conditions influence quality of fabricated parts. With more use, more needs and requirements are set to 
products fabricated by AM process. Ideally, AM parts should be at least equivalent, or preferably 
better quality than conventionally fabricated parts. One of the major problems that should be 
addressed is how to improve and control quality of as-built part and define what significantly 
influence the quality of a part.  
Mechanical stresses and defect generation play an essential role in the AM process. Manufacturing 
defects and their effects on the quality and performance of AM parts are the most difficult issues. It is 
essential to understand the defect types, their formation mechanisms, and the detection methodologies 
for mechanical properties evaluation and quality control. The tasks of the process to reduce them are 
not yet resolved. In general, these effects are associated both with the process of melting the powder 
material (gas porosity) and solidification of the melt. In the first case, the significant effects affecting 
the formation of defects (pore defects) are the beam power density distribution, the surface tension, the 
Marangoni convection and the recoil pressure [3, 4]. In the second case the micropore formation is due 
to atomic point defects (PD) (vacancies and self-interstitials), formed by fluctuation at the solid site of 
the solid-liquid interface and their clustering in the process of diffusion.  
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Experimentally it is very difficult to define those parameters and their combinations, which have the 
most impact on mechanical and physical properties of the product. SLM is an inherently multi scale, 
multi physics process and calls for an approach using multiple coupled models. Existing modeling 
tools used to study laser processing of materials are currently being actively extended to AM 
modeling. There are many different approaches to the modeling of the thermal history and resulting 
profiles of parts manufactured by AM processes. Most of the existing studies utilize numerical 
methods, due to the complexity of the phenomena that take place [5-7]. However, multiscale models 
of solidification are needed, which will include the evolution of morphology and growth of various 
microstructures (grain growth, dendrites, etc.). 
One of the important tasks is the quantitative inclusion of elastic effects in the model of the 
microstructure evolution during SLM. This is of general scientific interest in applications in which 
elastic fields act as a stable driving force for phase transformations (FP) or as a basic field for 
consistently modeling such processes as the generation and motion of non-equilibrium PDs, plasticity 
and others, accompanying the rapid solidification of the melt. PDs lead to local changes in interatomic 
distances and, consequently, to lattice distortions. In the process of cooling, PDs can migrate either 
due to a chemical potential gradient or elastic interaction, or to be trapped by other defects or so-called 
absorbers, such as dislocations, grain boundaries. The density and stability of the absorber will 
determine the accumulation of mobile PDs created at the liquid-solid interface, which affects the 
stability of the phase and/or structure and the kinetics of the microstructure development and 
properties of the material. The residual stresses and distortions, which are caused by the non-
homogenous thermal phenomena (heating and cooling) and the PD generation that take place in AM, 
deteriorate the mechanical properties and the dimensional accuracy of the parts. 
In the present contribution a physically thermodynamically consistent phase field model proposed by 
Wang et al. [8] is extended to describe the microstructure evolution during additive SLM process 
taking into account the coupled processes of heat transfer, stress effects and PDs generation on liquid-
solid interface. Constitutive relations are derived on the basis of a single entropy functional and the 
principle of entropy production positiveness. The application of this principle allows obtaining 
consistent evolutionary equations for the phase field coupled with the fields of temperature, PD 
concentration and atomic elastic displacements for non-isothermal conditions of crystallization. Some 
applications of the developed coupled model of defect formation during solidification are considered. 
Diffusion-flexural instability with the formation of PD clusters (micropores and dislocation loops) and 
its effect on the exfoliation of deposited thin layers on a substrate are also discussed. 

2.  Formulation of the problem 
Microstructure evolution during SLM process has negligible effect on heat transfer and temperature 
distribution in the build, while the heat transfer is mainly affected by the heat conductivity of the 
materials, as well as the AM processing parameters such as laser power, laser scan speed, beam 
diameter, powder feed rate et al. With these assumptions, the microstructure evolution during SLM 
can be decoupled into two sub models on different length scales: (i) the macroscopic thermo-
hydrodynamic model to obtain the temperature and fluid velocity distributions and thermal history in 
the build during the whole SLM; (ii) the phase-field model for microstructure evolution during 
solidification at the SLM process. 
We assume that the second phase can have a different lattice parameter from the mother phase, and 
therefore elastic stress is generated. It is also assumed that the generation of PDs on liquid-solid 
interface occurs. Within the phase field conception, the state of considered system at time t is defined 
by the five field variables: the temperature field ( , )T tr , the concentration of PDs ( ( , )n tr ), the atomic 
displacement field ( ( , )tu r ) representing the mechanical motion, and the phase field ( , )tφ r for 
microstructure evolution. The order parameter (φ ) is defined as 0 in liquid and 1 in solid, and 
smoothly varies over an interface of a certain width δ  (δ  has to be small compared to the 
microstructure length scale of interest). We denote by ( , )tµ r , ( ,t )η r  and ( , )e tr  the diffusion 
potential of the PDs, the entropy and internal energy densities (per unit volume), respectively.  
The balance laws for the energy and PDs concentration can be written as  
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( )( ) ( )( )( ) n ne
v v i ie µ µ= − ⋅ − ⋅ ⋅j j - j +σε ∇ ∇ ∇ ,                                       (1) 

( ) ( )( ) , , ,n
v v v v v in Q T R n n T= − ⋅ + φ −j ∇ ,                                           (2) 

( ) ( )( ) , , ,n
i i i i v in Q T R n n T= − ⋅ + φ −j ∇ ,                                           (3) 

where ( )ej  is the energy flux, ( )n
vj  and ( )n

vj  the vacancies and self-interstitials fluxes, respectively, iµ  
and iµ , the diffusion potentials of PDs, σ  the stress tensor, ε  the total strain tensor; ( ), ,v iQ T φ  the 

PDs generation rates on liquid-solid interface (l-s), ( ), ,i vR n T  characterize the losses of PD 
concentration associated with their recombination. The second and third terms in (2) represent the flux 
of energy carried by the fluxes of PDs [8] and the last term - changes due to strain.  
We restrict attention to small strains, thus the total strain tensor is given by the sum of the elastic, 
thermal, concentration and phase strains, ( )elε , ( )thε , ( )dε  and ( )trε , respectively  

( )( ) ( ) ( ) ( ) ,el th tr d
i v= + n n+ +ε ε ε ε ε ,                                               (4) 

( )( )th
refT T= −ε Β ,  ( ) ( ) ( )( )

0 0,d
v i v v v i i in n n n n n= − + −ε Ω Ω , 

where the tensor T∂ ∂Β = ε takes into account the strains due to thermal expansion; ( )dε  is the PD 
induced eigen-strain, the tensor , ,i v i vn= ∂ ∂Ω ε  scales the defect concentration changes, 0in  and 0vn  
are the equilibrium PDs concentrations. For the particular case of isotropy: 

( ), 1 a da dnα α= − =IΩ , a  is the lattice parameter and I  is the second order identity tensor); ( )trε  
is the strain generated from the difference in the volumes of phases l and s. For the isotropic case 
( )

0
tr χ= Iε . The transformation expansion coefficient 0χ  is expressed by the formula obtained by 

converting the rate of volumetric change into a linear expansion coefficient ( )0 / 3s l lv v vχ ≈ − . The 

total strain is given by ( )1 2ik i k k iu uε = ∇ ∇+ . 
The dissipation inequality is given by  

( )( )1 2 2eT .φη α φ φ−≥ −∇⋅ −j  ∇                                                           (5) 
2
φα  is a gradient-energy coefficient. With the use of (1), (2) and (3) we have from (5) 

( ) ( ) ( )2 2 1 0n n e
v v i i v v i iT n n T Tφα φ φ ψ η µ µ µ µ −+ − − + + − ⋅ − ⋅ + ⋅ ≥j j j    ∇ σ : ε ∇ ∇ ∇ ,      (6) 

where e Tψ η= −  is the Helmholtz free energy. The free energy density (ψ ), the stress (σ ), and the 
entropy (η ) can be expressed as a function of the following internal state variables characterizing the 
system behavior: the phase field (φ ), the temperature field (T ), the elastic strain e

ikε and PDs 
concentration ( i vn ,n ) such that 

( )ˆψ ψ= Λ , ( )ik ikˆσ σ= Λ ,  ( )ˆη η= Λ ,                                             (7) 

where Λ  denotes the list ( )e
ik i v,T , ,n ,nφ ε=Λ . Differentiating (7)1 in time, we get: 

i v i v i v

i v
, ,n ,n ,T ,n ,n i v,T ,n ,n ,T , ,T ,

ˆ ˆ ˆ ˆ ˆ
T n n

T n nφ φ φ φ

ψ ψ ψ ψ ψψ φ
φ

∂ ∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂ ∂

   
ε ε ε ε

ε
ε

.    (8) 

Substituting (8) into (6), we find 

( ) ( )

( ) ( ) ( ) ( )

2 2 tr tr

tr 0

v v v
, ,n v,T ,n ,T ,

e n n
i i i i i v v

,T ,ni ,T ,

ˆ ˆ ˆ
T n

T n

ˆ ˆ Tn .
n T

φ
φ φ

φφ

ψ ψ ψα φ φ η β µ α
φ

ψ ψµ α µ µ

    ∂ ∂ ∂
 − − + − − + −       ∂ ∂ ∂    

   ∂ ∂
 − + − + − − ⋅ − ⋅ − ⋅ ≥   ∂ ∂  

j j j

  



εε ε

ε

∇ σ σ

∇
σ σ : ε ∇ ∇

ε

   (9) 
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If in inequality (9) we take into account that, and T , vn  in  and ε   can change in an independent way, 
then to satisfy it at any values of T , vn  in  and ε , we need to put  

( ) ( )tr
, ,n

ˆ T
φ

η ψ β= − ∂ ∂ +
ε

σ ,   ( )
,T ,n

ˆ
φ

ψ= ∂ ∂σ ε , ( ) ( )trv ,i i ,v i ,v,T ,
ˆ n

φ
µ ψ α= ∂ ∂ −

ε
σ  (10) 

at  
( ) ( ) ( ) ( )2 2 1 0e n n

i i v vˆ T Tφα φ ψ φ φ µ µ−− ∂ ∂ − ⋅ − ⋅ − ⋅ ≥j j j∇ ∇ ∇ ∇ .                            (11) 
From the inequality (11) it is possible to identify three dissipative processes. The first term represents 
the phase field dissipation, which is related to the rearrangement of atoms during the evolution of the 
phase fields. The second term is the heat transport caused by diffusion. The last two terms represent 
the dissipation caused by PDs. The positivity of entropy production can be locally assured having 
chosen the following relationships for the diffusional flows and the time derivatives of variables 

( ) 0e T⋅ ≤j ∇ ,     ( ) ( ) ( ) 1, ,e
eT m T Tφ φ −=j ∇ ,                                     (12) 

( ) ( )n
v v v vm ,T ,nφ µ= −j ∇ ,   ( ) ( )n

i i i im ,T ,nφ µ= −j ∇ ,                                   (13) 

( )1 2 2 ˆm ,Tφ φφ φ α φ ψ φ− = ∇ − ∂ ∂ ,                                                   (14) 

where mφ  is the phase field mobility, 0im > , 0vm >  and 0em >  characterize PDs diffusion and 
thermal conductivity, respectively. 

3.  Local governing equations 
We assume that the total free energy density is given by  

( ) ( ) ( ) ( )dw th el chψ ψ ψ ψ ψ= + + +                                                         (15) 
with 

( ) ( ) ( )22 1dw w g( ) wψ ψψ φ φ φ φ= = − , 
( ) ( ) ( ) ( )th th

lT T p φψ = Φ + ∆Φ , 

( ) ( ) ( ) ( ) ( ) ( )( )1, ln ln 1 ln 1ch fa
v v a i i v v i v i v

a

NT n E n Rv n n n n n n n n
v

ψ −= + + − − − − − . 

Here ( ),dw Tψ φ  is the double–well potential, guaranteeing that the free energy function has two local 
minima at 0φ =  and 1φ = corresponding to the two phases of the system. wψ  is the height of the 

energy barrier between phases. ( ) ( )th
l TΦ  is the free-energy density of the liquid (

( ) ( ) ( ) ln( )th
l m mT с T T сT T TΦ = − − , с , the heat capacity, mT , the melting temperature), ∆Φ , the 

difference between the energies of the l and s phases; ( ) /m mL T T T∆Φ = −  ( L is the latent heat of 
fusion); ( )3 2( ) 10 15 6p φ φ φ φ= − +  is the interpolation function with ( )0 0p =  and (1) 1p =  for 

variation of many material property between solid and melt. f
vE  is the formation energy of vacancies, 

aN , the Avogadro number; av , the molar volume; gR , the universal gas constant.  

The elastic energy density is interpolated between the two phases using a smooth function ( )p φ : 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , 1 , ,el el el

i v s i v lT n n p T n n p Tψ φ φ ψ φ φ ψ φ= + −  u u u .             (16) 
The elastic energies of the s and l phases are given by  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ), , , , 0.5 : :el th tr d th tr d
s i v s s s s s s sT n nψ φ = − − Λ − −u ε − ε ε ε ε − ε ε ε ,          (17) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ), , 0.5 : :el th tr th tr
l l l l l lTψ φ = − Λ −u ε − ε ε ε − ε ε .                             (18) 

( lΛ and sΛ  are constants). In (18) it is assumed that the elastic strain is equal in all the phases 
assumed to be present as a mixture at every point in the diffuse interface region corresponding to  
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Voigt/Teylor homogenization model. It should be noted that the contribution to the elastic energy due 
to PDs ( ( )d

sε ) is nonzero only for the solid phase.Combining (4), (16), (17) and (18) we have 
( ) ( ) ( )( ) ( ), , , , 0.5 : :el el el

i vT n nψ φ φ=u ε Λ ε ,                                            (19) 
where ( ) ( )l pφ φ= + ∆Λ Λ Λ , s l∆ −Λ = Λ Λ . In the case of an isotropic medium, the elastic moduli          
(Λ ) depend only on the Lame constant (λ ) and the shear elastic modulus ( G )                                      
( ( )ijkl ij kl ik jl il jkGλδ δ δ δ δ δΛ = + + ), so that 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )

221 1
02 3

0 0

, , 3

.

el
ik ik

i i i v v v

T k G k T T

n n n n

ψ φ φ φ ε δ φ β φ

α φ α φ χ φ

= ⋅ + − ⋅ − −
+ − + − + ⋅

u u u

u

∇ ∇

∇
     (20) 

In (20) ( ) ( )lk k p kφ φ= + ∆  and ( ) sG G p( )φ φ=  are the bulk and shear moduli of the mixture, 

s lk k k∆ = − , 2 3k Gλ = −  ( ,s lk , the bulk moduli of the s and l phases, respectively, sG  the shear 
elastic modulus of the solid phase); ( ) l p( )β φ β φ β= + ∆  the thermal expansion coefficient of the 

mixture; ,s lβ , the thermal expansion coefficients of the s and l phases; l sβ β β∆ = − ; ( ) ( )0 pα φ α φ= , 
the dilatation volume of the PDs. The last term including ( ) ( )0 T pχ χ φ=  allows for the stresses 
generated because of the difference in the volumes of l  and s  phases. Elastic constants λ  and µ  are 
related to Young's modulus ( E ) and Poisson's ratio (ν ) via ( )2 1Eµ ν= +  and 

( )( )2 1 1 2Eλ ν ν ν= + − . 
Then, in view of (10), the entropy and diffusion potential are given by the following expressions 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

0 0

1

ln tr

ln ln 1 ln 1a i i v v i v i v

с T T w g Lp

Rv n n n n n n n n
ψη η φ φ β

−

= + − + + −

+ − − − − −

σ
           (21) 

( ),ch s v s
v vn pµ ψ φ= ∂ ∂ − σ : Ω ,                                                  (22) 

( ),ch s i s
i in pµ ψ φ= ∂ ∂ − σ : Ω .                                                  (23) 

The expression for the elastic stress, following from (10)2 and (20) has the form ( ) : ( el )φ= Λσ ε  or  

( )
( )

( )
( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

0

0 0

3
1 1 2ik ik ik ik

i i i v v v

E
k T T

n n n n .

φ ν φ
σ ε δ φ δ β φ

ν φ ν φ

α φ α φ χ φ

 
= + ∇⋅ − − +  + −  

+ − + − + 

u
    (24) 

Substituting (15) into (14), we obtain the following kinetic equation for the phase field 

( ) ( ) ( )(

( ) ( ) )( )

( ) ( )( )( )

1 2
0 0

0 0 0

22 1
3

3

0 5

i i i v v v

s ik ik

dgm T G T k T T
d

dpn n n n
d

dp. k .
d

φ ψφ α α φ ω β
φ

α α χ
φ

µ ε δ
φ

− = ⋅ − + ∆ + ∆ − +

+ ∆ − + ∆ − + ∇⋅ 

+ ∆ ∇⋅ + − ∇⋅

u

u u

 ∇ ∇

            (25) 

Using the energy balance (1), as well as the constitutive relation (7)1, we have the following energy 
equation 

( )e
i v i n i v n v

i v

ˆ ˆ ˆ
T n n m m

n n
ψ ψ ψη φ µ µ µ µ
φ

∂ ∂ ∂
+ + + = − ⋅ +∇ ⋅ ∇ +∇ ⋅ ∇
∂ ∂ ∂

j   ∇ .           (26) 

If in (26) to substitute the expression for η  

( ) ( )( ) ( ) ( ) ( ) ( )el el
i i v vˆ ˆ ˆ ˆ ˆT T n n n nη η η η φ φ η η= ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂   ε ε  
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and take the designation for heat capacity 2 2ˆс T Tψ= − ∂ ∂ , then the energy conservation law takes the 
form of the heat equation, which takes into account the relationship between temperature, PD 
concentration, stress and phase field: 

( ) ( )3 tr i n i v n v

v i
v i

cT T T ( )) m m

dp dgT n n L Tw .
T T d dφ

κ β φ µ µ µ µ

µ µ φ
φ φ

= ∇ − +∇ ⋅ ∇ +∇ ⋅ ∇ +

 ∂ ∂ + − +   ∂ ∂   

 

 

∇ σ

                     (27) 

Here we used the total heat capacity ( ) ( )l s lс с с с p φ= + −  ( lc  and sc  are the heat capacity for the 

melt and solid, respectively) and the thermal conductivity ( ) ( )2
e l s lm T pκ κ κ κ φ−= = + −  ( lκ  and sκ  

are thermal conductivity for the melt and solid, which are measured experimentally). In (27) thermo-
mechanical coupling term ( )3 trT ( ))β φ  σ  in the right-hand side is responsible for the Gough-Joule 
effects, i.e. when strain lead to structural heating and the coupling terms from third to sixth arise due 
to dissipative effects caused by the PD concentration diffusion. 
The PDs fluxes are expressed as  

( ) ( )1 1
3

( k ) s k ,sk
k k k k

B

DD n n n p
k T

φ = − + −  j ∇ ∇ σ :Ω                            (28) 

( ( ) ( )1k B n k kD k Tm T n n= −  the diffusivity of PDs, { },=k i v ). Combining this expression with (2) and 
(3), we obtain the equations of the kinetics of the PD subsystem in the form  

( )( ) ( ) ( )( )( )
( ) ( ) 1

1 1
3

6 1

s v ,sv
v v v v v v

B

*
v v v v ,i

Dn D n n n n p
k T

n T n R ,

φ

φ φ φ τ −

= + ∇ −

− − − −





∇ ∇ ∇ σ :Ω
                     (29) 

( )( ) ( ) ( )( )( )
( ) ( ) ( )1

1 1
3

6 1 0

s i ,si
i i i i i i

B

*
i i i v ,i

Dn D n n n n p
k T

n T n R ,

φ

φ φ φ τ φ−

= + ∇ −

− − − − ≠





∇ ∇ ∇ σ :Ω
                  (30) 

with ( ) ( )( ) ( ) ( )( ), ,4 exp /f eq eq
v i i v v i v i v iR D D a E T n n n nπ= + − −  and ( )0 0i ,vn , φ≡ = , where, in , iD  are 

the concentration and the diffusion coefficient of interstitial atoms, respectively. 1
v ,iτ −  are the 

recombination rates of PDs on sinks. The last term on the right-hand side (29) and (30) takes into 
account the effects of mutual recombination of PDs.  
The elastic field can be obtained in terms of the phase field using the local equilibrium condition. 
Ignoring inertia and body forces, conservation of linear momentum yields: 0ikσ∇⋅ =  or 

( )( ) ( ) ( ) ( )( )
( )( )

0

1
3

3

2 0

i i i v v

k ik ik

k k n n T p( )

G .

φ α φ α φ β φ χ φ

φ ε δ

 ∇ ∇⋅ − + + + + 
 + ∇ − ∇⋅ = 

u

u
                  (31) 

Eqs. (25), (27) and (29)-(31) constitute a closed system of equations of the PFM for the microstructure 
evolution during SLM process. The microstructure evolution is determined by the thermal history of 
the materials, which is result of laser energy absorption by the powder particles and substrate, heat and 
mass transfer within the build part and heat losses. To describe the effects of temperature  and fluid 
velocity distributions and thermal history on the microstructure growth kinetics the developed theory 
should added to the macroscale model [10] of dynamic processes accompanied SLM. The model of 
the processes at the macroscopic level considered by [10] takes into account the interaction of laser 
radiation with the powder particles, the evolution of the free surface (the interface between the melt-
gas phase), hydrodynamics and heat and mass transfer in the fusion zone. The energy equation of the 
multiphase mixture takes into account convective and conductive flows, as well as the latent heat 
release accompanying the phase transition. The dynamics of convective currents is modeled with the 
use of a complete system of equations for the continuity of a multiphase mixture and the motion of a 
multiphase mixture with allowance for the action of capillary and thermo-capillary forces on the free 



Компьютерная оптика и нанофотоника                 F.Kh. Mirzade 

V Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2019) 738 

surface. For tracking the free surface of the melt, a volume of fluid method can be used. At this 
structural level the processes in a scale of the condensed system in the whole are considered and 
processes in two-phase region, where the formation of the microstructure takes place are not included. 
Thus, macromodel predicts the temperature field coupled with the convection flow velocity, and 
changes in the form of the free surface in the process of SLM 
The temperature distributions found from the the microscopic model can be used as boundary and 
initial conditions for solving the problem of the evolution of the microstructure. It allows investigating 
the influence on the microstructure formation of both the SLM parameters and the parameters of 
microprocesses such as diffusion of heat and defects, lattice dilatation, strain-induced drift of PDs. etc. 
In addition, based on it, instability phenomena accompanying the process of melt solidification can be 
studied. In particular, at high PDs concentration, due to the defect-deformation positive feedback, both 
periodic distributions of defects and their localized states - stable PDs clusters can occur. 

4.  Diffusion-elastic instability of elastic layers 
One of the most important manifestations of the cooperative defect-deformation interaction during 
microstructure evolution is the phenomenon of clusterization of similar atomic PDs, with the 
formation of micro- and nanometer-clusters. The clustering process occurs due to instability of the 
homogeneous distribution of carriers interacting through the elastic deformation fields created by them 
(the diffusion-elastic instability of the (DEI). DEI occurs when the average carrier concentration 
exceeds a certain critical value. With DEI, fluctuations in the concentration of disorder carriers, being 
elastic inclusions, create a deformation of the elastic continuum, which in turn leads to the appearance 
of deformation-induced drift of the carriers. Due to the redistribution of carriers, forces appear that are 
proportional to the gradient of their concentration ( n∇ ) and directed in the compression region (for v  
-defects with dilatation volume ( ) 0vα < ), and in the stretching region (for i-defects with ( ) 0iα > ). 
When a certain critical concentration crn  is exceeded, these forces increase small fluctuations of 
carrier concentrations, and an instability of the concentration field (as well as the field of elastic 
deformation of the medium) arises. 
With the use of (25), the expression for the total flux of defects becomes  

( ) ( )( ) ( )21n j
D dr v B effD nk / k T n D n n .α= + = − − ∇ = ∇j j j                                        (32) 

Inclusion of the elastic deformation effects gives rise to an additional term in the above expression       
( drj ) and it represents the flux opposite to the usual diffusion ( Dj ) in a system with defects of the 
same type ( ( )2 0jα >  for ( ) 0jα >  and ( ) 0jα < ). In the case of PDs of different types ( 0( i ) ( v )α α < ) 
the additional flux has the same direction as the diffusion flux. The PDs with ( ) 0jα < , for example, 
vacancies, compress the lattice (reduce the volume) and the compressed regions attract PDs with 

( ) 0jα < and repel those with ( ) 0jα > . 
The quantitative conditions for the appearance of clusters in a system of PDs of the same type, for 
example, vacancies, can be found by substitution of Eq. (32) into continuity equation 

( ) 1
0

nn Q nτ −+ ⋅ = −j ∇  ( 0Q const= ) and linearization of the latter in the vicinity of the homogeneous 
solution ( 0 0n Q= τ ).The DEI increment (Γ ) is then 

( ) ( )2 2 1
01 Bq Dq n k k Tα τ −Γ = − − −  

( q is the wave number). It therefore follows that the system is unstable if 
1 2

0 cr BQ Q k T kτ α−> = ,  ( )2 2 2
0 0 0cr B Bq q k T k n k Tτ α> = − .                              (33) 

Physically, the fulfillment of conditions (33) is equivalent to a local change in the sign of the effective 
diffusion coefficient of the PDs: ( )2

0 01eff BD D kn k Tα= − . This means that the homogeneous 
distribution of PDs, starting from a certain critical rate of their formation, which is determined by 
temperature, dilatation volume, elastic modulus, and density of recombination centers, becomes 
unstable. A strain-induced current arises, leading to an increase in the areas of compression (for v  - 
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defects) or tension (for i -defects) of the concentration of defects, to their satiation and the formation 
of the corresponding clusters. The second inequality in (33) imposes a restriction on the spatial scale 
of inhomogeneities. If we accept that, 23 310 cmα −≈ , 11 35.10 erg cmk −=  then 2 110 scrQ − −= . 
In the case of thin layers (coatings) on the substrate, the role of the strain field is played the bending 
coordinate ( ),x yξ , which characterizes the displacement of the points of the median plane of the film 
along z -axis (the z  - axis is perpendicular to the layer plane, the plane 0z =  coincides with the 
midplane of the layer). Using the relationship between the layer strain ( )f f

= ∇uε  and the bending 

coordinate: ( )2
h

f zε ξ= ν − ∆ , ( ) ( )1 2 1p pν σ σ= − −  ( h - layer thickness) for the strain-induced 

current of PDs along the layer surface, we have: ( ) ( )0 2dr Bj n D h k Tνϑ ξ= − ∇ ∆ . 
The equation for bending deformation will be obtained if we take into account that from the PD 
subsystem side (along z ) there acts a force bending the film 

( ) ( )
2 2

212

2
2

12
h /f

d h /

h c
h z h ndz,ξ νϑ ρ −

−
∆ = − − ∆∫  

where ( )2 21f f f fс E ρ σ= −  is the layer rigidity, dϑ κα=  the deformation potential of the defect. The 
corresponding dispersion equation of DEI is 

( )
2 2

2 1
0 2 1

2
d

f B f

q Dq n
k Tc

ϑ ν τ
ρ

− 
Γ = − −  

 
. 

For the occurrence of DEI it is necessary that the PDs concentration exceeds a critical value 
2 2 2

02cr f B f dn k T cρ ϑ ν= . The inhomogeneous flexural strain, interacting with the vacancies produced 
as the film grows, produces under certain conditions a vacancy drift directed counter to the diffusion 
in the vacancy system. In this case the compression regions attract the vacancies, while the tension 
regions repel them. Becoming localized in the compression region, the vacancies themselves deform 
the film, enhancing thereby the initial fluctuations of the strain. The ensuing instability leads to 
formation, in the vacancy localization regions, of a high supersaturation sufficient for pore nuclei to 
appear and grow. In result, the adhesion of a layer to its substrate becomes weaker at the positions of 
such pore clusters and peeling off of the SLM layer can be observed.  

5.  Conclusions  
To ensure the required mechanical and physical properties of SLM parts, it is necessary to conduct a 
thorough joint study of the processes of heat propagation, formation and growth of various defects and 
deformation using physical and mathematical models. Most microdefects are formed during crystal 
growth as a result of diffusion agglomeration of PDs. In this work, a coupled phase field temperature-
diffusion-stress formulation for microstructure evolution during SLM has been presented with PD 
generation on liquid-solid interface. The model has been developed in a formal thermodynamic 
setting, with entropy functional instead of a Helmholtz free energy functional associated with 
microstructural non-isothermal processes, the postulation of energy balance and demonstration that the 
classical entropy inequality is satisfied. Various couplings terms introduce dependencies between 
different processes. The governing equations that follow from the fundamental balance laws involve 
the phase variable, the atomic displacement field, and the defect concentration field, with significant 
couplings between all equations. The model includes concentration-dependent eigen-strain, strain due 
to PT, strain dependency on PT and local mechanical equilibrium conditions.  
The dynamics equations of the of the PDs subsystem take into account the diffusion (ordinary and 
stress-induced drift) of the PDs concentration, their recombination on neutral absorbers. The energy 
transfer equation includes contributions to the energy balance associated with dissipative effects 
generated by a change in the PDs concentration, as well as by the generation of latent heat due to 
phase changes. Some applications of the proposed coupled model of defect evolution have been 
discussed. The thermodynamically consistent approach used to derive control equations is 
characteristic not only for the solidification during SLM process, but covers a wide class of problems 
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(laser heating of solids, laser synthesis of thin films, etc.), in which thermal conductivity, diffusion of 
defects, and elastic effects are related. 
The microstructure evolution during SLM is determined by the thermal history of parts, which is result 
of laser beam energy absorption by the powder particles and substrate, heat and mass transfer within 
the build part and heat losses. The resultant inhomogeneous temperature distribution and thermal 
history from the macroscopic thermo-hydrodynamic model can be used as the initial and boundary 
conditions for defect diffusion, which influences grain growth during SLM. Linking of microstructure 
evolution by considering the relationship of micro - and macroparameters, including laser and powder 
parameters such as laser power, scanning probe size and scan velocity will lead to a better 
understanding of different aspects of the microstructure evolution during the SLM. 
This work was supported by the Ministry of Science and Higher Education within the State 
assignment FSRC «Crystallography and Photonics» RAS in part of «diffusion-elastic instability of 
elastic layers», RFBR (Project No. 16-29-11743 ofi_m) in part of «phase field model formulation of 
microstructure evolution with defect generation during SLM». 
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