В переходном режиме течения на затуха че колебания оказывает ние только сравнительно большая шеро. соответствуршая классу чистоты поверхности у 2 и ниже.

При даминарном течении шероховатость не оказывает влияния на ватухание колебаний. Труби можно считать гидродинамически гладкими.

ЛИТЕРАТУРА

- Valensi G. Oscillation d'un liquide pesant et visqueux dans un tube en U de faible diamétze, pazametze de similitude, criteze de transition, C.r. Acad. Sci., 224, 1947
- 2. Valensi G., Clazion C. Oscillation d'un liquid pesant et visqueux dans un tube en U de faible diamétre (II, verification experimentale), parametre de similitude, crite're de transition, C.r. Acad. Sci., <u>224</u>, 1947.
- Кравченко А.Е., Смирнов А.Г. Экспериментальные исследования свободных затухадщих колебаний хидкости в U - образных круглых трубках. Сб.: "Физическая гидродинамика и кинетика хидкости", Ростов-на-Дону, 1968.

А.И. Белоусов, Д.Е. Чегодаев

СТАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПНЕЕМОСТАТИЧЕСКИХ ОПОР С УЧЕТОМ ЦЕНТРИРОВАНИЯ

Принятые обозначения

D - диаметр плунжера; L - длина камеры; ℓ - длина выходной щели; ℓ^* - расстояние от торца плунжера до центрирующих отверстий; $\chi = \ell/L$ - относительный ход плунжера; $\chi^* = \ell^*/L$ - относительное расстояние центрирующих отверстий от.торца плунжера; \mathcal{O}_O^* - величина радиального зазора при концентричном положении поршня в обойме; \mathcal{O}^* - текущая величина радиального зазора; \mathcal{O}_{∞}^* - диаметр

входного жиклера; d_{gp} – диаметр центрирукщего канала; $F_{mc} = \frac{\pi d_{sec}^2}{L}$ площадь сечения входного жиклера; $F_{\kappa} = \frac{\pi D^2}{4}$ площадь камеры; S' число поясов центрирования; \mathcal{T} - температура; ρ - давление; $\tilde{\rho}$ = = $\rho/\rho_{\delta x}$ - относительное давление; $\bar{\rho}_{\kappa\rho}$ - критическое давление; R газовая постоянная: М - коэффициент динамической вязкости ; - ускорение свободного падения; // - показатель адиабаты (для воздуха л = I,4); d - коэффициент расхода; М массовый расход : \mathcal{W} - несущая способность: \mathcal{C} - жесткость; $\tilde{\mathcal{C}}$ = - коэффициент жесткости; вх, к, др, вых-индексы, определяющие элементы и процессы соответственно входного дросселя, камеры, центрирующих отверстий цели на уровне пояса центрирования и выходной щели: а - индекс, определяющий среду, в которую происходит истечение: 1, П - индексы, определяющие элементы и процессы в выходной цели соответственно до центрирующих каналов и за ними по ходу рабочего потока; i', i+1, i-1 - индексы соответствующие l, i+1, i-1 поясам центрирования.

Однорядный подвод смазки

В работах [1,2] приведени зависимости для определения статических характеристик пневмостатических опор большого хода. Их вывод основан на составлении уравнения постоянства массового расхода через входной дроссель и кольцевую цель переменной длины. Однако, для центрирования плунжера в обойме необходимы радиальные каналы (рис.1), введение которых изменяет расчетную схему подпят-

ника. При некоторых соотношениях гидродинамических сопротмылений входной цели и центрирурщих каналов несоответствие расчетных схем мохет вызвать существеннур ошибку в расчетах.для более точного определения статических характеристик мухно учесть влияние центрирурщих каналов на основные статические параметры- несущур способность и хесткость. Кроме того, для исследования центрирования необходимо знать распределение давления по щелевому тракту, которое моцет быть определено ливь при известном давления на выходе из центрирурших капилляров.

Рис.1.Гидростатическая опора больного хода с центрированием давлением из камеры

Расчетная схема опоры с центрированием давлением из камер изобрахена на рис. 1. В этой схеме воздух, поступарший под давлением в камеру, далее частично поступает в кольцевой завор. а PRT часть воздуха течет по радиальным каналам и, соединяясь с основным потоком. вытекает через шель в окрудающую среду с давлением . Центрирование достигается гидростатическим эффектом, возниp~ карщим при смещении плундера от концентричного полодения. Восстанавливахщая сила обусловлена разностью давлений в местах с большим гидродинамическим сопротивлением (меньшим зазором) и меньшим сопротивлением (большим зазором). В зависимости от перепада давлений во входном и центрирующих хиклерах могут устанавливаться различные редимы течения: M < 0.3 -газ течет по законам неслимаемой кидкости: докритический реким (🖌 < 1); сверхкритический режим (М > 1). Номбинация этих режимов дает девять расчетных схем.

Рассмотрим докритическое и сверхиритическое течение слимаемого газа во входном и центрирующих элементах гидростатической опоры.

Массовый расход черее входной хиклер в случае докритического рехима списывается уравнением Сен-Венана-Ванцеля

$$M_{\beta x} = \alpha_{\beta x} F_{xc} p_{\beta x} \frac{\sqrt{2n/n-1}}{\sqrt{gRT_{\beta x}}} \left(\frac{p_x}{p_{\beta x}}\right) \sqrt{1 - \left(\frac{p_x}{p_{\beta x}}\right)^{n-1/n}}.$$
 (1)

При сверхкритическом перепаде давления

$$\left(\frac{p_{\kappa}}{p_{\beta x}}\right)_{\kappa p} \leq \left(\frac{2}{n+1}\right)^{n/n}$$

имөөм

$$\mathcal{M}_{Bx} = d_{Bx} F_{me} p_{Bx} \frac{\sqrt{2n/n-1}}{\sqrt{gR T_{Bx}}} \left(\frac{2}{n+1}\right)^{1/n-1} \sqrt{\frac{n-1}{n+1}}$$
(2)

При ламинарном течении газа в кольцевой цели длиной $\ell - \ell_I$ массовый расход определяется зависимостью

$$M_{\underline{n}} = \frac{\pi D \mathcal{O}_{0}^{3}}{12 \mu (l - l_{I})} \frac{\rho_{u_{I}}^{2} - \rho_{d}^{2}}{2 q R T_{b \nu x}}$$
(3)

Считая процесс течения газа изотермическим $\mathcal{T}_{\delta b x} = \mathcal{T}_{\delta x} = \mathcal{T} = const$, вводим обозначение для параметра опоры

$$\mathcal{A} = \frac{24\alpha'_{BX} F_{\mathcal{H}} \mu L \sqrt{gRT}}{\pi D \delta_0^3 \rho_{BX}} \sqrt{\frac{2n}{n-1}} \quad . \tag{4}$$

Так как $M_{\beta x} = M_{I\!I}$, то при $\bar{\rho}_{\kappa} > 0,528$ из формул (I) и (З) следует

$$A(\chi - \chi^{*}) = \frac{\bar{p}_{u}^{2} - \bar{p}_{q}^{2}}{\bar{p}_{\kappa}^{4/n} \sqrt{1 - \bar{p}_{\kappa}^{n-1/n}}}$$
(5)

Параметром опоры (4) удобно пользоваться при изменении противодавления ρ_{q} с сохранением постоянного значения ρ_{fx}

При постоянном противодавлении удобнее пользоваться видоизмененным параметром опоры

$$\bar{A} = \frac{A}{\bar{p}_{a}} = \frac{24 \measuredangle \delta x F m \mu L \sqrt{gRT}}{\pi D \sigma_{a}^{5} \rho_{a}} \sqrt{\frac{2n}{n-1}}$$
(6)

Тогда уравнение (5) перепишется в виде

$$\bar{\mathcal{A}}(x - \chi^{*}) = \frac{\bar{p}_{u}^{2} - \bar{p}_{a}^{2}}{\bar{p}_{a} \bar{p}_{\kappa}^{\prime / n} \sqrt{1 - \bar{p}_{\kappa}^{n - 1 / n}}}$$
(7)

Совместное решение уравнений (2) и (3) определяет аналогичное соотношение при сверхкритическом перепаде давлений на входном дросселе

$$\bar{A}_{\kappa p} \left(\chi - \chi^* \right) = \frac{\bar{p}_{ul}^2 - \bar{p}_{d}^2}{\bar{p}_{a} \left(2/n+1 \right)^{t/n-1} \sqrt{n-t/n+1}} \tag{8}$$

при л = 1,4

$$A_{\kappa p} (x - \chi^*) = 3,84 \frac{\bar{p}_{u}^2 - \bar{p}_a^2}{\bar{p}_a}.$$

Установить соотношение между $\tilde{\rho}_{eq}$ и $\hat{\rho}_{\kappa}$ в зависимости от параметра центрирования и относительного хода позволяет баланс массовых расходов $\mathcal{M}_{g\rho} = \mathcal{M}_{\underline{u}} - \mathcal{M}_{\overline{\iota}}$.

Обозначив параметр центрирования по аналогии с параметром опоры (6)

$$\bar{A}_{gp} = \frac{A_{gp}}{\bar{p}_{q}} = \frac{24 \, kd \, gp \, F_{gp} \, \mu \, L \, \sqrt{gRT}}{\pi \, D \, \delta_{0}^{3} \, \rho_{a}} \sqrt{\frac{2n}{n-1}}$$

после соответствующих преобразований получим $\rho u \frac{\rho_w}{\rho_\kappa} > 0,528$ и n = 1.4

$$\tilde{A}_{g\rho}(x-x^{*})x^{*} = \frac{(\bar{\rho}_{\omega}^{2} - \bar{\rho}_{\kappa}^{2})x + (\bar{\rho}_{\kappa}^{2} - \bar{\rho}_{\sigma}^{2})x^{*}}{\bar{\rho}_{\sigma}\bar{\rho}_{\kappa}(\bar{\rho}_{\omega}/\bar{\rho}_{\kappa})^{1/n}\sqrt{1 - (\bar{\rho}_{\omega}/\bar{\rho}_{\kappa})^{n-1/n}}};$$
(9)

при $\bar{\rho}_{us}/\bar{\rho}_{\kappa} < 0,528$ и $\dot{n} = I,4$

$$\bar{q}_{gp}(x-x^{*})x^{*} = \frac{3.84}{\bar{\rho}_{\alpha}\bar{\rho}_{\kappa}} \left[\left(\bar{\rho}_{\kappa}^{2} - \bar{\rho}_{\alpha}^{2} \right) x^{*} - \left(\bar{\rho}_{\kappa}^{2} - \bar{\rho}_{\omega}^{2} \right) x \right], \quad (10)$$

В зависимости от соотношения диаметра центрирующего отверстия и величины зазора дросселирование может осуществляться или в радиальном отверстии или по кольцевой поверхности, образованной кромкой центрирующего канала и противолежащей поверхностью. Если нет центрирующих камер, то при дросселировании отверстиями должно обеспечиваться условие $d_{g\rho} < 4 d^{\circ}$, либо дросселирование будет происходить по пояску. Расход газа через кольцевую диафрагму определяется уравнением Сен-Венана-Ванцелл, но коэффициент расхода зависит от эксцентриситета и изменяется в широком диапазоне [3]. При небольшом изменении эксцентриситета коэффициент расхода можно взять осредненным, для него параметр опоры и расчет характеристик проводится по выражениям (7), (8), (9), (10).

Для упроцения записи используем понятие коэффициента давления в цели, [4] _____

$$k_{g} = \frac{\bar{p}_{\kappa}^{2} - \bar{p}_{w}^{2}}{\bar{p}_{\kappa}^{2} - \bar{p}_{q}^{2}} \cdot$$

Тогда при ламинарном течении газа в щели в зависимости от соотношения параметров опоры и центрирования могут быть следующие схемы:

I) докритический режим течения во входном дросселе и в центрирующих каналах

$$\bar{A}(x-x^{*}) = \frac{(\bar{p}_{\kappa}^{2}-\bar{p}_{q}^{2})(1-k_{q})}{\bar{p}_{q}\bar{p}_{\kappa}^{0,714}\sqrt{1-\bar{p}_{\kappa}^{0,286}}};$$

$$Agp(x-x^{*}) = \frac{(\bar{p}_{\kappa}^{2}-\bar{p}_{q}^{2})(1-k_{q}x/x^{*})}{\bar{p}_{a}\bar{p}_{\kappa}(\bar{p}_{\omega}/\bar{p}_{\kappa})^{0,714}\sqrt{1-(\bar{p}_{\omega}/\bar{p}_{\kappa})^{0,286}}},$$
(II)

 сверхкритический режим течения газа во входном дросселе и в центрирующих каналах

$$\bar{A}_{\kappa p}(x-x^{*}) = 3,84/\bar{p}_{a}\left[(\bar{p}_{\kappa}^{2}-\bar{p}_{a}^{2})(1-k_{g})\right];$$

- 73 -

$$\bar{A}_{gp\,\kappa p}(x-x^{*}) = 3,84/\bar{\rho}_{a}\,\bar{\rho}_{\kappa}\left[(\bar{\rho}_{\kappa}^{2}-\bar{\rho}_{a}^{2})(1-\kappa g\,x/x^{*})\right];$$
(12)

3) докритический режим течения во входном дросселе и сверхкритический режим в центрирующих каналаз:

$$\bar{A}(x-x^{*}) = \frac{(\bar{p}_{\kappa}^{2} - \bar{p}_{\alpha}^{2})(1-k_{\alpha})}{\bar{p}_{\alpha}\bar{p}_{\kappa}^{0,714}\sqrt{1-\bar{p}_{\kappa}^{0,2265}}};$$

$$\bar{A}_{gp \kappa p}(x-x^{*}) = 3,84/\bar{p}_{\alpha}\bar{p}_{\kappa}\left[(\bar{p}_{\kappa}^{2} - \bar{p}_{\alpha}^{2})(1-k_{g}x/x^{*})\right],$$
(I3)

4) сверхкритический режим течения во входном дросселе и докритический режим в центрирующих каналах

$$\begin{split} \bar{A}_{\kappa p} (x - x^{*}) &= 3,84 / \bar{p}_{a} \left[(\bar{p}_{\kappa}^{2} - \bar{p}_{a}^{2})(1 - k_{g}) ; \\ \bar{A}_{gp} (x - x^{*}) &= \frac{(\bar{p}_{\kappa}^{2} - \bar{p}_{a}^{2})(1 - k_{g} x / x^{*})}{\bar{p}_{a} \bar{\rho}_{\kappa} (\bar{p}_{\omega} / \bar{\rho}_{\kappa})^{5/7/4} \sqrt{1 - (\bar{p}_{\omega} / \bar{\rho}_{\kappa})^{5/266}} . \end{split}$$
(14)

Решением полученных систем уравнений при определенном параметре опоры $\bar{\mathcal{A}}$, параметре центрирования $\bar{\mathcal{A}}_{gp}$, относительном расстоянии центрирующего пояса от торца плунжера χ^* и относительном давлений окружающей среды $\bar{\rho}_{a}$ устанавливается однозначная зависимость давления в камере $\bar{\rho}_{\kappa}$ от относительного хода плунжера

 χ или относительного давления на выходе из центрирующих элементов $\bar{\rho}_{\mu}$ для различных $\bar{\rho}_{\kappa}$. Полученные зависимости сложны в практическом применении.

Аппроксимация (I) уравнениями [5]

$$M_{Bx} = \alpha_{5x} F_{x} \sqrt{2/g} R T_{Sx} \sqrt{p_{x} (p_{Sx} - p_{x})};$$

$$M_{gp} = k \alpha_{gp} F_{gp} \sqrt{2/g} R T_{gp} \sqrt{p_{uu} (p_{x} - p_{uu})}$$
unnochume (II + IA):

позволяет упростить соотношения (II + I4):

I) докритические режимы течения на входном дросселе и центрирующих каналах

$$\vec{A}_{i}(x-x^{*}) = \frac{(\vec{P}_{\kappa}^{2} - \vec{P}_{\alpha}^{2})(1-\kappa_{c})}{\vec{P}^{\alpha}\sqrt{\vec{p}_{\kappa}}(1-\vec{p}_{\kappa})};$$

$$\vec{A}_{igp}(x-x^{*}) = \frac{(\vec{P}_{\kappa}^{2} - \vec{P}_{\alpha}^{2})(1-\kappa_{g}x(x^{*}))}{\vec{P}^{\alpha}\sqrt{\vec{P}} \cdot \mu(\vec{P}_{\kappa} - \vec{P}_{\alpha})};$$
(15)

 сверхкритический режим течения на входном дросселе и центрирующих каналах

$$\begin{split} \bar{\mathcal{A}}_{1\,\kappa\rho}\left(x-x^{*}\right) &= 3,84/\bar{\rho}a\left[\left(\bar{\rho}_{\kappa}^{2}-\bar{\rho}a^{2}\right)\left(1^{-}k_{g}\right)\right] ; \\ \bar{\mathcal{A}}_{1g\rho\,\kappa\rho}\left(x-x^{*}\right) &= 3,84/\bar{\rho}a\,\bar{\rho}\kappa\left[\left(\bar{\rho}_{\kappa}^{2}-\bar{\rho}a^{2}\right)\left(1^{-}k_{g}x/x^{*}\right)\right] ; \end{split} \tag{16}$$

 докритический режим течения во входном дросселе и сверхкритический режим в центрирующих каналах

$$\bar{\bar{\mathcal{A}}}_{I}(X-X^{*}) = \frac{(\bar{\bar{\rho}}_{K}^{2} - \bar{\bar{\rho}}_{a}^{2})(1-k_{a})}{\bar{\bar{\rho}}_{a}\sqrt{\bar{\bar{\rho}}_{K}}(1-\bar{\bar{\rho}}_{K})}; \qquad (17)$$

$$A_{gp\,\kappa p\,(x-x^*)=3,84/\bar{p}_{a}\,\bar{\rho}_{\kappa}\left[(p_{\kappa}^2-\bar{\rho}_{a}^2)(1-k_{g}x/x^*)\right];$$

4) сверхкритический режим течения во входном дросселе и докритический режим в центрирующих каналах

$$\bar{A}_{1\kappa\rho}(x-x^{*}) = 3,84/\bar{\rho}_{\alpha}\left[(\bar{\rho}_{\kappa}^{2}-\bar{\rho}_{a}^{2})(1-k_{g})\right];$$

$$\bar{A}_{1g\rho}(x-x^{*}) = \frac{(\bar{\rho}_{\kappa}^{2}-\bar{\rho}_{a}^{2})(1-k_{g}x/x^{*})}{\bar{\rho}_{a}\sqrt{\bar{\rho}_{u}}(\bar{\rho}_{\kappa}-\bar{\rho}_{u})}$$
(18)

Здесь

$$\tilde{A}_{1} = \frac{24 \,d_{\beta x} F_{\infty} \,ML \sqrt{2gRT}}{\pi D \,\sigma_{o}^{o} \,\rho_{a}} , \quad \tilde{A}_{igp} = \frac{24 \,k \,d_{gp} F_{gp} \,ML \sqrt{2gRT}}{\pi D \,\sigma_{o}^{o} \,\rho_{a}}$$
(19)

Решая системи уравнений, можно получить зависимость относительного давления в камере $\bar{\rho}_{\kappa}$ от относительного хода плунжера X. По известной зависимости $\bar{\rho}_{\kappa}$ можно определить нагрузочную способность подпятника $W = \bar{\rho}_{\kappa} \rho_{\delta x} F_{\kappa}$. Под статической жесткостью понимается производная несущей способности опоры по перемещению $C = dW/d\ell$. Коэффициент статической жесткости (безразмерная жесткость) принимается равным $\bar{C} = \frac{CL}{F_{\kappa} \rho_{\delta x}} =$

Многорядный подвод смазки

В общем случае для центрирования поршня может быть использовано два и более поясов центрирующих каналов. Это позволит воспринимать односторонней опорой не только радиальные усилия, но и моменты, действующие на неё. Характер течения в щели существенно изменится и будет зависеть не только от параметра опоры, но и от параметров центрирования, число которых определяется числом центрирующих поясов.

Уравнение неразрывности для *с* - того капилляра (рис.2) запишется так:

$$M_{i,i+1} = M_{i,i-1} = M_i .$$

75 -

Массовые расходы через центрирующий канал определяются соотношениями (I) и (2), а через щель - зависямостью (3) с соответствующими индексами.

Обозначая коэффициент давления на выходе из *i* - того центрируицего отверстия

$$kq_{i} = \frac{\bar{p}_{\kappa^{2}} - \bar{p}_{u_{i}}^{2}}{\bar{p}_{\kappa^{2}} - \bar{p}_{\alpha^{2}}},$$

и, подстави его значения и значения массовых расходов, получим

Рис.2. Опора с несколькими поясами центрирования

$$\bar{A}_{i}(x_{i+1}-x_{i})(\dot{x}_{i}-x_{i+1}) = \frac{(\bar{P}_{\kappa}^{2}-\bar{P}_{\alpha}^{2})[k_{i+1}-k_{i})(x_{i}-x_{i+1}) \cdot (k_{i}+k_{i-1})(x_{i+1}-x_{i})}{\bar{P}_{\alpha}\sqrt{\bar{P}_{w_{i}}}(\bar{P}_{\kappa}-\bar{P}_{w_{i}})}$$
(20)

где i = I,2, ...S,

Аналогично для сверхкритического перепада давлений на центрирующих отверстиях

$$\begin{split} \bar{A}_{i\,\kappa\rho} \left(x_{i+1} - x_{i} \right) (x_{i} - x_{i-1}) &= 3.84 / \bar{\rho}_{\sigma} \bar{\rho}_{\kappa} \left(\bar{\rho}_{\kappa}^{2} - \bar{\rho}_{\sigma}^{2} \right) x \\ &\times \left[(k_{i+1} - k_{i}) (x_{i} - x_{i-1}) - (k_{i} - k_{i-1}) (x_{i+1} - x_{i}) \right], \end{split}$$

$$\begin{aligned} \text{ (21)} \\ \text{ rme } i &= \mathbf{I}_{*2}, \dots, \mathbf{S} \end{split}$$

Системы (20) и (21) замыкаются уравнениями (7) и (8) соответственно. При S = I, т.е. когда центрирование плунжера осуществляется одним рядом капилляров, соотношения (20) и (21) в комбинации с уравнениями (7) и (8) принимают вид (15-19).

Таким образом, уравнения (20) и (21) могут быть использованы для точного определения статических характеристик пневмостатической опоры с любым числом центрирующих поясов. Кроме того, они позволяют определить давление на выходе из каналов, которое необходимо для расчета центрирующих характеристик исследуемого подпятника.

Анализ результатов статических испытаний пневматической опоры большого хода

На рис. 3, 4 сплошными линиями нанесены теоретические зависимости относительного давления в камере от относительного Dĸ иля случая без центрирования из камер, а штриховой - с хола χ центрированием из камер. Приведены характеристики для параметров = 2,34; 6 и 30, центрирования $A_{ab} = 16 \text{ M}$ поллятника A x* = 0.25. относительных противодавлений p_a = 0.2; 0.3; 0.5,что соответствует входным давлениям $p_{s_T} = 4;$ 2.3: 1 ати. Точками изображены результаты экопериментальных исследований подпятсоответствующими расчетным. Круглые точки ника с параметрами.

Рис.З. Зависимость давления в камере от хода опоры

Рис.4. Зависимость давления в камере от хода опоры

соответствуют схеме опоры без центрирования из камер, треугольные – с центрированием. Зачерненные круги и треугольники на рис.З получены при $\tilde{\rho}_{a}$ = 0,5, а помеченные точкой – при $\tilde{\rho}_{a}$ = 0,3. На рис.4 они соответственно получены при \tilde{A} = 2,34; \tilde{A}_{gp} = 16 и \tilde{A} =6; \tilde{A}_{gp} = 36.

Из сравнения теоретических и экспериментальных результатов видно, что эксперимент удовлетворительно согласуется количественно и качественно с теоретическими результатами при больших относительных перекрытиях. При малых X наблюдается существенное несовпадение, объясняемое тем, что при теоретическом исследовании течения рабочего тела в кольцевой щели учитывались лишь потери на трение. При малой длине цели существенное влияние на коэффициент расхода оказывают другие виды потерь, связанные с формированием профиля скоростей на начальном участке, со внезапным сужением на входе в щель и расширением на выходе из опоры. Для плунжера с центрированием из камер при $\chi = \chi^*$ наблюдается резкое падение относительного давления $\bar{\rho}_{\kappa}$ до значения ρa . Это объясняется выходом центрирующих каналов из камеры. В диапазоне OT 2 х наблюдается существенное несовпадение теоретичесχ* ло

ких и экспериментальных данных вследствие больших утечек через центрирукцие каналы. Лучшая стабильность характеристик получена при бо́льших давлениях на входе и меньших зазорах 8.

На рис. 5 показано изменение относительного давления в дели $\bar{\rho}_{\alpha\beta}$ на уровне центрирующих канадов для одного параметра $\bar{A}_{g\rho} = 36$. Лучшее собладение получено при меньших значениях $\bar{\rho}_{\alpha}$ (больших значениях давления на входе).

Влияние параметров А Адр , для постоянного И относительного противодавления $\bar{p}_{q} = 0.2$ на соотношение давления в камере Рк и относительного хода плунжера х показано на рис.4. Видно, что с ростом параметра опоры А при фиксированном значении ра относительное давление в камере увеличивается. Расхождение экспериментальных данных и теоретических зависимостей снижается при уменьшения А и возрастании х.

Рис.5. Изменение давления в щели от хода опоры

В результате проведенных исследований можно сделать следующие выводы:

следует разрабатывать схемы надежного центрирования, посколь-

ку оно существенно влияет на основные характеристики опоры большого хода;

центрирование поршня давлением из камер может наиболее эффективно использоваться при малых значениях $\bar{\rho_{\alpha}}$ (больших входных давлениях) и малых радиальных зазорах σ_{o} , поскольку при больших величинах зазоров поршень может заклинить;

расчет опоры с центрированием из камер при малых χ^* и больших χ можно производить без учета расхода через центрирующий пояс, однако если $\chi < 2 \chi^*$, необходимо учесть его влияние.

ЛИТЕРАТУРА

- Белоусов А.И. Основы теории расчета гидростатических амортизаторов. "Вибрационная прочность и надежность двигателей и систем летательных аппаратов. Труды КуАИ, выд. 51, Куйбышев, 1972.
- Белоусов А.И., Несоленов Г.Ф., Макушин А.Б., Чегодаев Д.Е. Статические характеристики пневмостатических амортизаторов двустороннего действия. "Вибрационная прочность и надежность двигателей и систем летательных аппаратов". Труды КуАИ, вып. 51, Куйбышев, 1972.
- 3. Богачева А.В. Пневматические элементы систем автоматического управления. М., "Малиностроение", 1966.
- Грессем Н.С., Пауэлл Дж.У. Подшипники с газовой смазкой. "Мир", М., 1966.
- 5. Березовец Г.Г., Дмитриев В.Н., Нафаджаров Э.М. О допустимых упрощениях при расчете пневматических регуляторов. "Приборостроение". № 4, 1957.
- Р.Х. Сандт, Г.В. Филиппов, Г.Е. Фомин, В.Г. Шахов

РАСПРОСТРАНЕНИЕ ТЕПЛА ОТ ИСТОЧНИКА ПОСТОЯННОЙ ИНТЕНСИВНОСТИ

Принятые обозначения

а, а, -температуропроводность среды и тонкой стенки; Ср, Ср, - теплоёмкость среды и тонкой стенки; р - параметр преобразования

- 78 -