ристик профиля, движущегося вблизи плоской стенки. - РЖ "ВТЭ", серия "А", вып. 29. Деп. № ДОЗ661, 1978.

- Введение в аэроавтоупругость /С.М.Белоцерковский, Ю.А.Кочетков А.А.Красовский, В.В.Новицкий. – М.:Наука, 1980.
- 5. Baker P.A. Schweikhard W. Y. Flight evaluation of ground effect on several low-aspect - zatio aizplanes. - NASA TND-6053, October, 1970.
- Горелов Д.Н., Куляев Р.Л. Нелинейная задача о нестационарном обтекании тонкого профиля несжимаемой жидкостью. – АН СССР, МЖГ, 1971, № 6.

УДК 533.6.011.32

З.Х.Нугманов, В.Г.Павлов, М.Г.Шарафеев

ПРОЕКТИРОВАНИЕ ПРОФИЛЯ ПО ЗАДАННОМУ РАСПРЕДЕЛЕНИЮ ДАВЛЕНИЯ

Излагается численный метод построения контура крылового профиля по заданному распределению давления на его поверхности в потенциальном потоке несжимаемой жидкости.

Решению обратной задачи аэродинамики на основе метода конформных отображений и гидродинамических особенностей, размещенных по контуру профиля, посвящен целый ряд работ [I] – [I4]. В последние годы получили широкое распространение численные методы расчета, базирующиеся на решении интегродифференциального уравнения, выражающего условие совпадения контура профиля с одной из линий тока [6] – [9], [II] – [I4].

Наиболее простой и эффективный метод решения уравнения линии тока дан в работах [6] - [9]. В работах [I2], [I3] авторам удалось достичь высокой степени точности решения интегродифференциального уравнения благодаря применению аналитического способа вычисления интегралов на отдельных элементах поверхности профиля (панелях). Такой способ вычислений позволяет повысить точность расчетов при проектировании профилей с эаостренными задними кромками.

В данной работе также решается уравнение линии тока относительно чекомой ординаты профиля. Но в отличие от методов [6] и [12]здесь для окчения контура профиля применен ряд из полиномов Якоби, удовлетворяющий условиям замкнутости и формы кромок профиля. Кроме того, задавая коэффициенты ряда, можно получить профили с заданными геометрическими характы устовиям (толщины, кривизны и т.д.). Задача решена методом последовательных приближений, в котором в качестве начального приближония ваято уравнение симметричного профиля.

Матоматическое описание замкнутого контура. Уравнение профиля ирыля представим в параметрической форме

$$x = \cos\theta, \ y = y[x(\theta)],$$

r

гдо изменению параметра θ от нуля до 2*я* соответствует обход контура против часовой стрелки. Хорда профиля принята равной 2.

Уравнения верхней и нижней поверхностей контура представим в виде

$$\mathcal{Y}_{\mathcal{B}} = \mathcal{Y}_{\mathcal{F}} + \mathcal{Y}_{\mathcal{C}} \cdot \mathcal{Y}_{\mathcal{H}} = \mathcal{Y}_{\mathcal{F}} - \mathcal{Y}_{\mathcal{C}} \cdot$$
(I)
где $\mathcal{Y}_{\mathcal{F}}$ и $\mathcal{Y}_{\mathcal{C}} - \phi$ ункции, описывающие среднюю линию и симметричную сос-
тавляющую контура профиля.

Приближенные значения у, и ус найдем в виде полного ортогонального ряда из полиномов Яхоби [5]:

$$\begin{aligned} & \mathcal{U}_{f} = B_{f} \sum_{n=1}^{N_{f}} a_{fn} B_{fn} = \sum_{n=1}^{N_{f}} a_{fn} a_{fn} a_{fn}, \\ & \mathcal{U}_{c} = B_{c} \sum_{n=1}^{N_{c}} a_{cn} P_{cn} = \sum_{n=1}^{N_{c}} a_{cn} Q_{cn}, \\ & \text{rge} \quad B_{f} = \sqrt{(1+x)^{2}(1-x)^{2}} = 1-x^{2}, \\ & B_{c} = \sqrt{(1+x)^{\beta_{f}}(1-x)^{\beta_{2}}} = (1-x)\sqrt{(1+x)}. \end{aligned}$$
(2)

Значения β_1 и β_2 задаются в зависимости от вида кромок симметричного профиля. Если передняя кромка профиля закруглена, а задняя – заострена, то $\beta_1 = I$, $\beta_2 = 2$. Зункции Якоби β_{fn} и P_{cn} для этого случая находим из следующих соотношений:

$$P_{f_{\eta}} = \frac{n+1}{(n-1)(n+3)} - \left[(2n+1)x P_{\eta-1}(x) - n P_{\eta-2}(x) \right]; \tag{4}$$

$$P_{cn} = \frac{n\left\{ \left[(4n^2 - 1)x + 3\right] P_{n-1}(x) - (n-1)(2n+1) P_{n-2}(x) \right\}}{(n-1)(n+2)(2n-1)},$$
(6)

The
$$P_{f1} = 1$$
, $P_{f2} = 3x$, $P_{f3} = 7x^2 - 1$, ...;
 $P_{c1} = 1$, $P_{c2} = 0.5(5x + 1)$, $P_{c3} = 3(7x^2 + 2x - 1)/4$, ...

Если профиль задан в виде дискретных значений координат, то контур этого профиля можно описать аналитически с помощью уравнений (2). Коэффициенты ряда в этом случае определяются по формулам $a_{fn} = H_{fn} \int \mathcal{G}_{fn} (\theta) Q_{fn} Sin \theta d\theta$, (6)

$$a_{cn} = H_{cn} \int \frac{g}{g_c}(\theta) \theta_{cn} Stn \theta d\theta$$
,
где $g_c(\theta)^n \quad g_c(\theta)$ - заданные функции, например, в виде полиномов

Лагранжа:

9

$$H'_{\mathcal{P}n} = \frac{(n+2)(n+3)(2n+3)}{32n(n+1)}, \quad H'_{cn} = \frac{(n+1)(n+2)}{8n}.$$

Значения производных от \mathcal{Y}_{ρ} и \mathcal{Y}_{c} по параметру θ следующие: $\begin{aligned} \dot{\mathcal{Y}}_{f} &= \frac{d\mathcal{Y}_{\sigma}}{d\theta} = -\mathcal{Y}_{f}' \sin \theta; \\ \dot{\mathcal{Y}}_{c} &= \frac{d\mathcal{Y}_{\sigma}}{d\theta} = -\mathcal{Y}_{c}' \sin \theta, \\ rightarrow \\ \dot{\mathcal{Y}}_{f}' &= \frac{d\mathcal{Y}_{c}}{dx} = \sum_{n=1}^{N_{f}} d_{fn} (B_{f}' P_{fn} + B_{f} P_{fn}'); \\ \dot{\mathcal{Y}}_{c}' &= \frac{d\mathcal{Y}_{c}}{dx} = \sum_{n=1}^{N_{c}} d_{cn} (B_{c}' P_{cn} + B_{c} P_{cn}'); \\ B_{f}' &= -2x, \quad B_{c}' &= -\frac{1+3x}{2(1+x)^{1/2}}. \end{aligned}$

Формулы для определения P'_{cn} и P'_{cn} получаются из выражений (4) и (5). ункция y'_{c} имеет особенность в точке x = -I. Раскрывая неопределенность, получаем:

$$\dot{y}_{c} = -\sum_{n=1}^{N_{c}} \alpha_{cn} \left(\frac{1+3\cos\theta}{\sqrt{2}} - \rho_{cn}\sin\frac{\theta}{2} - B_{c}\rho_{cn}'\sin\theta \right).$$

По формулам (2) – (6) была найдена геометрия профиля B-I2 по ее дискретным значениям координат. Коэффициенты ряда для этого профиля при шаге интегрирования $H = 2J_{4}^{2}80$ имеют значения:

При этом максимальная местная ошибка в вычислении координат составляет около 5% при сохранении числа членов $\alpha = 8$.

Из выражений (2) и (3) видно, что значения ординат профиля при $\mathcal{X} = \pm \mathbf{I}$ равны нулю, т.е. искомый контур получается замкнутым при любых значениях коэффициентоз $\mathcal{Q}_{g_{\mathcal{T}}}$ и $\mathcal{Q}_{g_{\mathcal{T}}}$. Следовательно, имеем $\mathcal{X}(0) = \mathcal{X}(2\pi) = 0$, $\mathcal{Y}(0) = \mathcal{Y}(2\pi) = 0$.

В работе [9] показано, что если вначале выбран замкнутый профиль и $V(0) = V(2\pi)$ то для любого приближения справедливо $\mathcal{Y}'(0) = \mathcal{Y}'(2\pi)$.

Для получения самонепересекающегося профиля необходимо соблодать условие $\mathcal{Y}_{G} > O$. В том случае, если $V(\mathcal{Y})$ приводит к самопересекающемуся

10

исптуру, то следует этору V(y) подправить [9].

Решение обратной задачи построения изолированного профиля. Если но новорхности крылового профиля разместить непрерывный вихревой

алой, то условие того, что контур является линией тока, приводит к интегральному соотношению [6] :

$$\begin{aligned} \Psi &= \frac{1}{4\pi} \int_{0}^{2\pi} \overline{V(\mathcal{Y})} \ln R(\theta, \mathcal{Y}) \sqrt{\dot{\xi}^{2} + \dot{z}^{2}} d\mathcal{Y} + \mathcal{Y} \cos \alpha - x \sin \alpha = const,^{(7)} \\ R(\theta, \mathcal{Y}) &= (x - \xi)^{2} + (y - z)^{2}. \end{aligned}$$

Взяв константу равной значению левой части интегрэла (?) при мадней кромке профиля с координатами x_o, y_o , будем иметь [6] :

$$\begin{aligned} y &= y_0 + (x - x_0) tg \alpha - \frac{1}{4\pi cos \alpha} \oint ln \frac{R(\theta, y)}{R(\theta_0, y)} \overline{V}(y) dy, \\ rad & ds &= \sqrt{\hat{y}^2 + \hat{i}^2} dy, R(\theta_0, y) = (x_0 - \hat{y})^2 + (y_0 - \hat{\gamma})^2 = R_0. \end{aligned}$$

ветствии с формуравнения верхней и нижней поверхлой (I) запишутся в виде

$$\begin{aligned} y_{\delta} &= y_{F} + y_{c} = y_{0} + (x - x_{0}) tg\alpha - \frac{1}{4\pi \cos \alpha} \oint ln \frac{n_{\delta}}{R_{0}} \overline{V}(s) ds; \\ y_{H} &= y_{F} - y_{c} = y_{0} + (x - x_{0}) tg\alpha - \frac{1}{4\pi \cos \alpha} \oint ln \frac{R_{H}}{R_{0}} \overline{V}(s) ds, \end{aligned}$$

$$^{1}_{\text{TR}^{\Theta}} R(\rho_{F}, \varphi) &= (x - \xi)^{2} + (y_{F} - \eta)^{2} = R_{F}; \end{aligned}$$

$$(8)$$

$$R(\theta_{H}, \mathcal{G}) = (x - \mathcal{G})^{2} + (\mathcal{G}_{H} - \mathcal{I})^{2} = R_{H}$$

Складывая и вычитая выражения (8), найлем: $y_p = y_0 + (x - x_0) t g \alpha - \frac{1}{\delta \pi \cos \alpha} \int_{S} ln \frac{R_{\delta R_H}}{R_0 R_0} \overline{V}(S) dS;$ $y_0 = -\frac{1}{\delta \pi \cos \alpha} \int_{S} ln \frac{R_{\delta}}{R_H} \overline{V}(S) dS.$ Подставляя значения полиномов (2) и (3) в предыдущие формулы,

умножая левую и правую части на Qfo и Qco и интегрируя, получим:

$$\begin{aligned} a_{fn} &= H_{fn} \left[tg \alpha \int (x - x_0) Q_{fn} dx - \frac{1}{\delta \pi \cos \alpha} \oint \int ln \frac{R_{f} R_{N}}{R_0 R_0} \overline{V} Q_{fn} ds dx \right], \\ a_{cn} &= -\frac{H_{cn}}{\delta \pi \cos \alpha} \int_{-1}^{+1} \oint ln \frac{R_{\theta}}{R_{H}} \overline{V} Q_{cn} ds dx \,. \end{aligned}$$

Интегралы вычисляются по методике панельного метода [12] .

Определение угла атаки. В выражении (7) зедадим константы такими, чтобы линия тока проходила через задною кромку (x_0 , y_0) и переднюю кромку профиля (x_n, y_n). Будем иметь

$$\begin{split} \psi &= \psi_0 \cos \alpha - x_0 \sin \alpha + \frac{1}{4\pi} \frac{\beta}{s} \ln R(\theta_0, y) \overline{V} ds, \\ \psi &= \psi_0 \cos \alpha - x_n \sin \alpha + \frac{1}{4\pi} \frac{\beta}{s} \ln R(\theta_n, y) \overline{V} ds. \\ \text{Вычитая из первого выражения второе, получим:} \\ &- (x_0 - x_n) \sin \alpha + \frac{1}{4\pi} \frac{\beta}{s} \ln \frac{R(\theta_n, y)}{R(\theta_n, y)} \overline{V} ds + (\psi_0 - \psi_n) \cos \alpha = 0. \end{split}$$

11

Откуда $Sin \alpha = \frac{1}{4\pi (x_0 - x_n)} \frac{\beta \ln \frac{R(\theta_0, y)}{R(\theta_n, y)}}{\sqrt{R(\theta_n, y)}} \sqrt{V} ds + \frac{y_0 - y_n}{x_0 - x_n} \cos \alpha$

Угол атаки вычисляется методом интераций на кеждом этапе определения контура профиля.

Высисление двойных интегралов. Контур профиля представим в виде плоских элементарных панелей, концы // -й панели имеют координаты 2/2, *Уп* и *Хп+1*, *Уп+1*. Тогда расстояние от точки *Хк*, *Ук* до произвольной точки панели (смотри рисунок) определится формулой $R^2 = a^2 + (b + \frac{ASn}{2} - S_1)^2$

$$S_{1} = \frac{\Delta S_{\Pi}}{n} \mathcal{G}_{1}, \quad \Delta S_{\Pi} = \sqrt{(x_{n+1} - x_{n})^{2} + (y_{n+1} - y_{n})^{2}};$$

$$\alpha^{2} = R_{1}^{2} - (\beta + \frac{\Delta S_{\Pi}}{2})^{2}, \quad \beta = (R_{1}^{2} - R_{2}^{2})/2 \Delta S_{\Pi}.$$

Рис. Характерные геометрические элементы

 $R_1^2 = (x_{\kappa} - x_{n})^2 + (y_{\kappa} - y_{n})^2;$ $R_2^2 = (x_{\kappa} - x_{n+1})^2 + (u_{\kappa} - y_{n+1})^2$. Рассмотрим вычисление интеграла

$$\mathcal{I}(\theta) = \mathcal{G}_{ln} \left\{ \left[x(\theta) - x(y) \right]^2 + \left[\mathcal{Y}(\theta) - \mathcal{Y}(y) \right]^2 \right\} \overline{V} ds \; .$$

на малом участке $0 \leqslant S_i \leqslant S_n$ значение относительной скорости представим в форме тавим в порме $\overline{V}(S_t) = \overline{V}(\mathcal{G}_n) + \frac{\overline{V}(\mathcal{G}_{n+1}) - \overline{V}(\mathcal{G}_n)}{\Delta S_n} S_t$. Тогда интеграл (9) на том же интервале приобретает вид

(9)

$$\Delta J_n = \int_0^{\Delta S_n} \left[a^2 + \left(b - \frac{\Delta S_n}{2} - s_1 \right)^2 \right] \left[\overline{V}(g) + \overline{V} s_1 \right] ds_1 , \qquad (10)$$

$$F_{\mu e} = \left\{ \overline{V}(g_{\mu}) - \overline{V}(g_{\mu}) \right\}$$

 $\overline{V}' = \frac{V(J_{n+1}) - V(J_n)}{\Delta S_n}.$ Hoche Bevucheruch интеграла (IO) получаем: $\Delta J_n = \left[\overline{V}(Y_n) + \overline{V}'(\mathcal{B} + \frac{\Delta S_n}{2})\right] E_1 - \overline{V}' E_2,$

$$E_{1} = \left(\beta + \frac{\Delta S_{n}}{2}\right) l_{n} R_{1}^{2} - \left(\beta - \frac{\Delta S_{n}}{2}\right) l_{n} R_{2}^{2} - 2\Delta S_{n} + 2a \left[azctg \frac{|\beta| + \frac{\Delta S_{n}}{2}}{a} - azctg \frac{|\beta| - \frac{\Delta S_{n}}{2}}{a}\right],$$

$$E_{2} = 0.5 \left[R_{1}^{2} l_{n} R_{1}^{2} - \left(\beta + \frac{\Delta S_{n}}{2}\right)^{2}\right] - 0.5 \left[R_{2}^{2} l_{n} R_{2}^{2} - \left(\beta - \frac{\Delta S_{n}}{2}\right)^{2}\right].$$

Если $R_1^2 < \varepsilon$ или $R_2^2 < \varepsilon$ ($\varepsilon = 10^{-8}$), то выражения для $E_1 \ \omega E_2$ имеют предельные энечения:

$$E_1 = 2\Delta S_n [ln \Delta S_n - 1],$$

$$E_2 = \frac{\Delta S_n^2}{2} [2ln \Delta S_n - 1].$$
Texum ofpasom, эначение интеграла (9) определится суммой:

$$\mathcal{J}(\theta) = \sum_{n=1}^{N} \Delta \mathcal{J}_n(\theta_{\kappa}, \mathcal{G}_n, \mathcal{G}_{n+1}).$$

По описанной методике были найдены контуры ряда профилей, для которых известны распределения скоростей. В таблице приведены значения $y_{\mathcal{B}}$, $y_{\mathcal{H}}$ для профиля B-I2, найденные путем интерполяции, и $y_{\mathcal{B}}^{\rho}$, $y_{\mathcal{H}}^{\rho}$ - по предложенной методике. Угол атаки $\infty = 6,039^{\circ}$, вычисленное значение 🗠 = 6,08°,

Значения Vg, V, несбходимые для решения обратной зедачи, были получены путем решения прямой задачи. Шаг интегрирования $h = 2 \pi / 80$, число сохраненных членов рлда - 8. Как видно из таблицы, результаты расчета (48, 4) близки к искомым эначениям (46.44).

Литература

- 1. Симонов Л.А. Расчет обтекания крыловых профилей и построение профиля по данному распределению скоростей у его поверхности.-Труды ЦАГИ, вып. 576, 1945.
- 2. Шурыгин В.М. Определение контура профиля по заданному распределению давлений. - Труды ЦАГИ, вып. 660, 1948.
- Тумашев Г.Г., Нужин М.Т. Обратные краевые задачи. Ученые записки Казанского государственного университета. Т. 115, кн.6, 1955.

Расчетные значения координат профиля В-12

VB	V _H	48	YH	48	Ун
I 548	I 548	0,0000	0.0000	0.0000	0.0000
1,782	0,312	0,0091	-0,0078	0.0087	_0.0073
1,580	-0,568	0,0305	-0,0203	0.0302	_0_0209
I 533	-0,774	0,0527	-0,0300	0,0525	-0,0303
I,492	-0,859	0,0704	-0,0364	0,0703	-0,0363
1,426	-0,907	0,0793	-0,0397 -	0,0790	-0,0394
I 3 33	-0,939	0,0773	-0,0408	0,0773	-0,0407
I 235	-0,966	0,0665	-0,0397	0,0665	-0,0398
1,147	-0,990	0,0510	-0,0363	0,0508	-0,0364
1,070	-I,002	0,0343	-0,0298	0,0342	-0,0300
I,003	-0,990	0,0197	-0,0205	0,0199	-0,0212
942	-0,953	0,0089	-0,0108	0,0090	-0,0115
0,90I	-0,907	0,0023	-0,0031	0,0022	-0,0037
0,900	-0,900	0,0000	0.0000	0,0000	-0,0000
		_			
					1
. 1					
	,548 ,782 ,580 ,533 ,492 ,426 ,333 ,492 ,426 ,333 ,235 ,147 ,070 ,003 ,942 ,901 ,900	% VA ,548 1,548 ,782 0,312 ,580 -0,568 ,533 -0,774 ,492 -0,859 ,426 -0,907 ,333 -0,939 1,235 -0,966 ,147 -0,990 ,070 -1,002 ,003 -0,990 ,942 -0,953 ,901 -0,907 ,900 -0,900	*8 *4 #8 .548 1,548 0,0000 .782 0,312 0,0091 .580 -0,568 0,0305 .533 -0,774 0,0527 .492 -0,859 0,0704 .426 -0,907 0,0793 .333 -0,939 0,0773 1,235 -0,966 0,0665 .147 -0,990 0,0510 .070 -1,002 0,0343 .003 -0,990 0,0197 .942 -0,953 0,0089 .901 -0,907 0,0023 .900 -0,900 0,0000	VB VA YB YA ,548 1,548 0,0000 0,0000 ,782 0,312 0,0091 -0,0078 ,580 -0,568 0,0305 -0,0203 ,533 -0,774 0,0527 -0,0300 ,492 -0,859 0,0704 -0,0364 ,426 -0,907 0,0793 -0,0397 ,333 -0,939 0,0773 -0,0408 1,235 -0,966 0,0665 -0,0397 ,147 -0,990 0,0510 -0,0363 ,070 -1,002 0,0343 -0,0298 ,003 -0,990 0,0197 -0,0205 ,942 -0,953 0,0089 -0,0108 ,901 -0,907 0,023 -0,0031 ,900 -0,900 0,0000 0,0000	1 38 34 35 548 1,548 0,0000 0,0000 0,0000 ,782 0,312 0,0091 -0,0078 0,0087 ,580 -0,568 0,0305 -0,0203 0,0302 ,533 -0,774 0,0527 -0,0300 0,6525 ,492 -0,659 0,0704 -0,0364 0,0703 ,426 -0,907 0,0793 -0,0408 0,0773 ,233 -0,939 0,0773 -0,0408 0,0773 ,235 -0,966 0,0665 -0,0397 0,0665 ,147 -0,990 0,0510 -0,0363 0,0508 ,070 -1,002 0,0343 -0,0298 0,0342 ,003 -0,990 0,0197 -0,0205 0,0199 ,942 -0,953 0,0089 -0,0031 0,0022 ,901 -0,907 0,0023 -0,0031 0,0022 ,900 -0,900 0,0000 0,0000 0,0000

- Шагаев А.А. Построение контура профиля по заданному распределению давлений в сжимаемом потоке газа. - Труды ЦАГИ, вып. 1925, 1978.
- Нугманов З.Х. Математическое описание повержности произвольного крыла. – В сб.: Вопросы проектирования летательных аппаратов. – Казань: КАИ, 1979.
- Павловец Г.А. Методы расчета обтекания сечений крыла идеальным несжимаемым потоком. – Труды ЦАГИ, вып. 1344, 1971.
- Павловец Г.А., Самознаев Н.Д. Численный метод построения контура крылового профиля по заданному распределению скоростей на его повержности. – Труды ЦАГИ, вып. 1271, 1970.
- Самознаев Н.Д. Построение контура профиля по заданному распределению скорости или девления на его поверхности вблиз: земли. - Труды ЦАГИ, вып. 1463, 1973.

- Самознаев Н.Д. Построение решетки профилей по заданному распределению скоростей на его поверхности. - Труды ЦАГИ, вып. 1452, 1973.
- Пешатов Г.Д., Новоселов Ю.Н. Применение метода случайного поиска для решения обратной задачи аэродинамики. - Авиационная техника, 1978, №2.
- II. Manulez W. Die Bezechnung eines Tragflügelprofiles mit Vorgeshrußener Druckverleilung-Jahrbuch der Deutschen Luftfahrt forschung, 1938.
- 12. Kennedy J.L., Mazsden D.J. A Potential Flour Design Method for Multicomponent Aiztoil Sections. - J. Aizczaft. Vol. 15, 1978.
- 13. Kennedy J.L. Mazsden D.J. The development of high lift Singlecomponent aizfoil Sections. - Accondutical Quarterly, V.30, N 1, 1979.
- 14. Liebeck P.H. On the design of Soubsonic accofoils for high lift. - HJAA Paper, 1976, N406.

УДК 533.6.11

А.И.Гамануха, В.И.Холявко

НЕСУПИЕ СВОИСТВА ЖЕСТКОГО ДВУХДОЛЬНОГО КРЫЛА ТИПА "ПАРАПЛАНА"

Теория тонкого тела применяется для исследования подъемной силы неплоского треугольного крыла, поперечное сечение которого образовано двумя дугами окружностей. Аналогичные формы наблюдаются на "парапланах", имеющих гибкие несущие поверхности. Результаты настоящих исследований могут быть распространены на нежесткие конфигурации.

Исследуемое крыло и его сечение показано на рис. І. Считаем, что ла атаки од и удлинение крыла в плане A малы: cC >> 1, A < 1.

од атаки определяем в плоскости симметрии крыла относительно корневой хорды. Следуя теории тонкого тела, запишем коэффициент подъемной силы крыла [1] :