На правах рукописи

Артемьева Мария Юрьевна

СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ОКСАЛАТСОДЕРЖАЩИХ КОМПЛЕКСОВ УРАНИЛА

02.00.01 - неорганическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Самара - 2005

Работа выполнена в ГОУ ВПО "Самарский государственный университет"

Научный руководитель: доктор химических наук, профессор

Сережкин Виктор Николаевич

Официальные оппоненты:	
доктор химических наук, профессор	Михайлов Олег Васильевич
доктор химических наук, профессор	Сулейманов Евгений Владимирович

Ведущая организация: Институт неорганической химии им. А.В. Николаева СО РАН

Защита состоится <u>11</u> ноября 2005 г. в 14 часов на заседании диссертационного совета ДМ 212.218.04 при ГОУ ВПО "Самарский государственный университет" по адресу: 443011, г. Самара, ул. Академика Павлова, 1, зал заседаний.

С диссертацией можно ознакомиться в научной библиотеке ГОУ ВПО "Самарский государственный университет". Автореферат разослан <u>10</u> октября 2005 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Бахметьева Л.М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Как известно, самым важным и наиболее распространенным классом соединений урана являются комплексы уранила, содержащие в своей структуре практически линейные и симметричные диоксокатионы UO₂²⁺ (ионы уранила). Среди соединений уранила важную роль играют оксалатсодержащие, которые используются в гидрометаллургических методах переработки урансодержащих материалов. К настоящему достаточно времени подробно изучены оксалатоуранилаты одновалентных катионов, тогда как разнолигандные оксалатсодержащие комплексы с другими ацидо- или электронейтральными лигандами исследованы сравнительно слабо. Возможности оксалатной группировки как лиганда широки: имея четыре атома кислорода, каждый из которых способен координировать атом урана, ион $C_2 O_4^{2}$ способен выступать в качестве моно-, би-, три- и тетрадентатного лиганда. При этом образуются пяти- и четырехчленные металлоциклы, а сам лиганд может играть роль не только хелатного. но И мостикового. Благодаря этим качествам оксалатсодержащие комплексы уранила являются удобным объектом исследования реакций замещения в координационной сфере атомов U(VI). Изучение способности лигандов замещать друг друга при синтезе соединений позволит в будущем управлять ходом химических реакций с целью получения комплексов необходимого состава с заранее известным строением И интересующими исследователей свойствами.

Работа выполнялась при финансовой поддержке Министерства образования РФ (грант для поддержки научно-исследовательской работы аспирантов высших учебных заведений А03-2.11-292) и РФФИ (грант № 05-02-17466).

Целью работы явились синтез и физико-химическое исследование новых оксалатсодержащих комплексов уранила, содержащих в своем составе другие ацидо- (NCS⁻, SO₄²⁻) или электронейтральные (карбамид и вода) лиганды. Одновременно в рамках данной работы планировалось с помощью полиэдров Вороного-Дирихле провести кристаллохимический анализ всех изученных на сегодняшний день оксалатсодержащих соединений и установить характерные для оксалат-ионов типы координации атомами комплексообразователями.

Основными новыми научными результатами и положениями, которые автор выносит на защиту, являются:

• сведения о составе, термографических, ИК, КР спектроскопических и рентгенографических характеристиках семи комплексных соединений уранила;

• данные о структуре кристаллов восьми комплексных соединений уранила;

• совокупность данных о кристаллохимической роли ионов C₂O₄², особенностях геометрии и характеристиках полиэдров Вороного-Дирихле

атомов углерода и кислорода 1400 кристаллографически разных оксалат-ионов в структуре кристаллов оксалатсодержащих соединений.

Практическая значимость работы определяется тем, что полученные рентгенографические, термографические, кристаллоструктурные, ИК- и КРспектроскопические характеристики синтезированных комплексов уранила требуются для их надежной идентификации. Полученные сведения о строении кристаллов комплексов уранила уже включены в Кембриджский банк кристаллоструктурных данных и могут быть использованы при анализе зависимостей между составом, строением и свойствами соединений урана. Установленные сведения о характерных типах координации оксалат-ионов позволят повысить достоверность прогнозов о строении еще неизученных соединений и дадут возможность совершенствования методов направленного синтеза комплексов заданного состава и строения.

Апробация работы и публикации

Результаты диссертационной работы докладывались на XX и XXI Международных Чугаевских конференциях по координационной химии (Ростов-на-Дону, 2001 г. и Киев, 2003 г.), на Уральской конференции по радиохимии (Екатеринбург, 2001 г.), на III Национальной кристаллохимической конференции (Черноголовка, 2003 г.), на Четвертой Российской конференции по радиохимии (Озерск, 2003 г.) и на Всероссийской конференции «Химия твердого тела и функциональные материалы – 2004» (Екатеринбург). По теме диссертации опубликовано 8 статей в журнале «Журнал неорганической химии» и тезисы 8 докладов.

Структура и объем работы

Диссертационная работа включает введение, обзор литературы, экспериментальную часть, обсуждение результатов, выводы, список использованных источников (105 наименований) и приложение. Текст диссертации изложен на 138 страницах машинописного текста, содержит 36 рисунков и 49 таблиц (в том числе 19 рисунков и 21 таблицу в приложении).

основное содержание работы

Во **введении** обоснована актуальность темы и практическая значимость работы, сформулирована цель работы, приведены основные новые научные результаты и положения, выносимые на защиту.

Первая глава диссертационной работы представляет собой обзор литературы и состоит из четырех частей. В *первой частии* приводится краткая характеристика иона уранила как комплексообразователя, во *второй* – обсуждаются координационные возможности оксалат-иона как лиганда и особенности его колебательных спектров. *Третья часть* содержит имеющуюся в литературе информацию о синтезе, строении и физико-химических свойствах разнолигандных (включающих H₂O, CO(NH₂)₂, OH⁻, NCS⁻ или SO₄²⁻) оксалатсодержащих комплексов уранила.

В четвертой части даются основные понятия кристаллохимического анализа неорганических и координационных соединений с помощью полиэдров Вороного-Дирихле (ВД) [1]. Полиэдр ВД представляет собой выпуклый многогранник, ограниченный плоскостями, которые проведены через середины отрезков, соединяющих рассматриваемый атом в структуре кристалла со всеми его соседними атомами, перпендикулярно этим отрезкам. Полиэдры ВД позволяют получить ряд новых геометрических характеристик координационной сферы атомов, в частности, объем полиэдра ВД (Vпвл), смещение атома из центра тяжести полиэдра ВД (D_A), характеризующее асимметрию координационной сферы, и степень сферичности полиэдра ВЛ (G₃). Радиус сферического домена (R_{CII}), объем которого равен объему полиэдра ВД, может служить характеристикой атома в сферически усредненном кристаллическом поле. Рассмотрен метод пересекающихся сфер [2] для определения координационных чисел (КЧ) атомов, опирающийся на модель межатомного взаимодействия, в рамках которой каждый атом аппроксимируется двумя сферами (радиус одной – r_s, второй – R_{CЛ}) с общим центром в ядре атома. Одна из сфер характеризует условно изолированный (химически несвязанный) атом и ее радиус (rs) является константой, которая для атомов данного химического сорта в структуре любого соединения равна слейтеровскому радиусу. В качестве критерия образования между двумя атомами в структуре соединения сильной химической связи (ковалентной, ионной или металлической) принято одновременное наличие двух (П₂), трех (П₃) или всех четырех (П₄) возможных парных пересечений указанных сфер этих при этом перекрывание только внешних сфер (Π_1) атомов. рассматривается как ван-дер-ваальсово взаимодействие и при определении КЧ не учитывается.

Обсуждены основные положения метода кристаллохимического анализа координационных соединений с полидентатно-мостиковыми о-лигандами [3], активно использующегося в данной работе. Предлагаемый подход опирается на анализ кристаллохимических (КХ) формул, заменяющих словесное или особенностей графическое описание основных топологии структуры образовании участвующих в соединения. Число атомов лиганда. Α, называется общей связей атомами металла координационных С дентатностью (D₁). Она обозначается буквенным символом: М – моно-, В – би-, Т – три-, К – тетрадентатность. Характер окружения лиганда атомами А Di mbtk цифровыми индексами в символе обозначается надстрочными последовательность которых определяет «парциальную» дентатность лиганда по отношению к каждому из атомов А (соответственно m – моно-, b – би-, t – три-, k - тетрадентатность), а сама цифра - количество атомов А, по отношению к которым лиганд проявляет данную дентатность.

Вторая глава посвящена методическим аспектам работы и состоит из семи частей. В *первой части* кратко охарактеризованы исходные вещества и методы исследования, использованные в работе. Методом химического анализа определяли содержание оксалат-ионов, урана и воды в синтезированных соединениях. Съемку рентгенограмм поликристаллических веществ проводили с использованием камеры-монохроматора FR-552 и камеры типа Гинье (λСиК_α). Дифференциальный термический (ДТА) и термогравиметрический (ТГА) анализ осуществляли с помощью дериватографа ОД-103 «МОМ». ИК спектры записывали на спектрофотометре SPECORD 75IR, образцы готовили в виде таблеток с KBr. КР спектры получали на спектрометре ДФС-24, гелий-Рентгеноструктурный неоновый лазер, $\lambda = 638$ HM. анализ (РСтА) монокристаллов четырехкружном проводили автоматическом на дифрактометре Enraf-Nonius CAD-4 (излучение λMoK_{α} графитовый монохроматор) с использованием метода функции Паттерсона в лаборатории рентгеноструктурного анализа ИОНХ им. Н.С. Курнакова РАН и в лаборатории рентгеноструктурного анализа ИНЭОС им. А.Н. Несмеянова РАН. Уточнение позиционных и тепловых параметров для всех неводородных атомов проводили в анизотропном приближении. Все расчеты выполнены по комплексу программ SHELXTL, ver. 5.10. Нейтронографические измерения для уточнения кристаллической структуры тригидрата оксалата уранила (использовались монохроматические нейтроны с длиной волны 1.3833Å) проведены на 48счетчиковом порошковом нейтронном дифрактометре, установленном на реакторе ВВР-М ПИЯФ им. Б.П. Константинова РАН. Расчет характеристик полиэдров ВД и определение КЧ всех атомов, анализ межатомных расстояний, валентных и диэдрических углов в структуре оксалатсодержащих соединений проводили с помощью комплекса структурно-топологических программ TOPOS.

Пользуясь предоставившейся возможностью, автор выражает свою глубокую признательность за помощь в проведении рентгеноструктурного или нейтронографического исследования изучавшихся в работе соединений к.х.н. Михайлову Ю.Н. и к.х.н. Горбуновой Ю.Е. (ИОНХ им. Н.С. Курнакова РАН), к.х.н. Долгушину Ф.М. и чл.-корр. РАН Антипину М.Ю (ИНЭОС им. А.Н. Несмеянова РАН), к.ф-м.н. Смирнову О.П. и д.ф-м.н. Плахтию В.П. (ПИЯФ им. Б.П. Константинова РАН).

Во второй, третьей, четвертой и пятой частях представлены условия синтеза семи комплексов уранила, а также сведения об их составе, термографических, рентгенографических, ИК и КР спектроскопических характеристиках. Синтез всех описываемых соединений проводили в водных растворах медленным испарением при комнатной температуре. Важнейшие данные рентгеноструктурного эксперимента приведены в табл.1.

Атомы водорода в структурах I-IV и VII выявлены объективно из разностных синтезов и включены в уточнение в модели "наездника". Позиции атомов водорода в структурах комплексов V и VI определить не удалось. Согласно РСтА, в структуре кристаллов всех изученных соединений координационными полиэдрами атомов урана являются пентагональные бипирамиды UO₇ или UO₆N, на главной оси которых находятся атомы кислорода ионов уранила.

N₂	Состав и кристаллохимическая формула комплекса	a, Å b, Å c, Å	α, град. β, град. γ, град.	Z	Пр. гр.	R _f , %	Число независимых отражений	Количество уточняемых параметров	№ рис.
I	$K_{2}[UO_{2}(C_{2}O_{4})_{2}\{CO(NH_{2})_{2}\}] \cdot H_{2}O$ $AB^{01}_{2}M^{1}$	8.831(1) 6.500(1) 24.033(4)	95.83(2)	4	P2 ₁ /c	2.7	2094	203	1a
II	$(CN_{3}H_{6})_{2}[UO_{2}(C_{2}O_{4})_{2}\{CO(NH_{2})_{2}\}]\cdot H_{2}O$ $AB^{01}_{2}M^{1}$	6.907(1) 9.852(4) 14.408(5)	74.20(3) 80.69(2) 74.51(2)	2	Ρī	3.1	3309	266	la
III	$(CN_{3}H_{6})_{2}[UO_{2}(C_{2}O_{4})_{2}(H_{2}O)] \cdot H_{2}O$ $AB^{01}_{2}M^{1}$	7.002(2) 11.367(2) 10.846(2)	100.71(3)	2	P2/n	3.1	1776	115	la
IV	$(NH_4)_4[(UO_2)_2(C_2O_4)_3(NCS)_2]\cdot 2H_2O$ $A_2K^{02}B^{01}_2M^1_2$	7.786(5) 8.839(4) 9.465(3)	108.30(3) 92.18(4) 92.73(4)	1	Pĩ	2.6	3885	173	16
V	$NH_4[UO_2(C_2O_4)(NCS)] \cdot 2H_2O$ $AK^{02}M^1$	9.129(2) 13.102(3) 8.981(2)	99.19(3)	4	C2/c	2.0	1271	72	1в
VI	$K_{2}[UO_{2}(C_{2}O_{4})(SO_{4})]\cdot 3H_{2}O$ $AK^{02}M^{1}$	5.743(1) 9.544(2) 11.845(2)	89.49(3) 84.95(3) 83.01(3)	2	Ρī	2.4	3465	172	lr
VII	$NH_{4}[(UO_{2})_{2}(C_{2}O_{4})_{2}(OH)]\cdot 2H_{2}O$ $A_{2}K^{02}_{2}M^{2}$	5.650(10) 13.628(3) 9.498(2)	96.64(3)	2	P2 ₁ /m	3.2	1244	107	1д

S

Таблица 1. Кристаллографические характеристики синтезированных комплексов уранила

Оксалатогруппы играют роль лигандов типа B^{01} (структуры I, II и III) или K^{02} (структуры V, VI и VII) и координированы атомом урана с образованием пятичленных металлоциклов. В комплексе IV присутствуют сразу два типа оксалат-ионов: B^{01} и K^{02} . Молекулы воды и карбамида, а также изотиоцианат- и сульфат-ионы являются монодентатными концевыми лигандами (тип M^1). Ионы гидроксила выступают в качестве монодентатных мостиковых (тип M^2) лигандов. Изученные структуры принадлежат к четырем топологическим типам комплексов уранила, строение которых схематично изображено на рис. 1. Уранилсодержащие комплексные группировки исследованных соединений имеют островное одноядерное (I-III) или двухъядерное (IV), цепочечное (V и VI) и слоистое (VII) строение.

спектроскопическом исследовании При в ИК спектрах всех синтезированных комплексов обнаружены полосы поглощения в области 895-935 см⁻¹, которые отвечают антисимметричным валентным колебаниям UO_2^{2+} . В КР спектрах наблюдаются интенсивные полосы в области 812-860 см⁻¹, которые соответствуют полносимметричным валентным колебаниям UO2²⁺. Для соединений I-III в ИК спектрах обнаружены полосы поглощения в областях 1260-1275 и 1400-1420 см⁻¹, которые отвечают симметричным колебаниям карбонильных группировок, что свидетельствует о бидентатноциклической координации оксалат-ионов. Наличие полос в области 1290-1340 см⁻¹ для IV-VII подтверждает данные рентгеноструктурного эксперимента тетрадентатноциклической координации С₂О₄²⁻.

Валентные колебания изотиоцианатной группы в комплексах IV и V лежат в области 790 и 2040 см⁻¹, что хорошо согласуется с координацией иона NCS⁻ к атому урана атомом азота. В ИК спектре соединения VI в области полос поглощения $v_3(SO_4)$ и $v_4(SO_4)$, отвечающих трижды вырожденным соответственно валентным и деформационным колебаниям группы $SO_4^{2^-}$, наблюдаются две составляющие, что согласуется с понижением симметрии точечной группы T_d до C_{3v} , происходящим при монодентатной координации сульфат-ионов. Полоса в области 965 см⁻¹ в КР спектре соответствует $v_1(SO_4)$.

При исследовании термического разложения синтезированных соединений выяснено, что в интервале температур от 80 до 180°С происходит потеря внешнесферных молекул воды, при дальнейшем нагревании образуется оксалат уранила. Разложение комплексов в области 500-900°С приводит к образованию оксида урана U₃O₈ либо ураната калия. В случае соединения VI образуется смесь K₂SO₄ и UO₃.

В шестой части описаны синтез и нейтронографическое исследование оксалата уранила. Порошкообразный образец UO₂C₂O₄·3D₂O был получен взаимодействием водных растворов нитрата уранила и щавелевой кислоты, которые предварительно несколько раз перекристаллизовывались в тяжелой воде. Полученная нейтронограмма включала в себя дифракционные отражения для межплоскостных расстояний в интервале 0.83 Å $\leq d_{hkl} \leq 12.73$ Å. Координаты атомов водорода и тепловые факторы всех атомов в элементарной ячейке уточнялись методом полнопрофильного анализа с помощью программы FULLPROF в рамках пространственной группы P2₁/с.

Рис. 1. Схематическое строение синтезированных комплексов.

v		
		0

сиптезированных комплексов уранила									
Соединение	UC	22+	$C_2O_4^{2}$						
соединские	v_1, cm^{-1}	ν ₃ , см ⁻¹	v _s (OCO), см ⁻¹	$v_{as}(OCO)$, cm^{-1}					
T	832	000	1268	1665					
		900	1420	1005					
п	812	805	1260	1650					
		695	1400	1050					
Ш	832	005	1275	1650					
		905	1410	1050					
IV	860	025	1300	1610					
	800	935	1340	1010					
V	850	020	1290	1600					
v	830	930	1340	1000					
VI	850	920	1310	1605					
VII	850	935	1290	1630					

Таблица 2. ИК и КР спектроскопические характеристики синтезированных комплексов уранила

При этом координаты атомов урана, углерода и кислорода, определенные рентгенографически [4], были фиксированы. Параметры моноклинной элементарной ячейки были уточнены при температуре 290 К: a = 5.608(1), b = 17.016(3), c = 9.410(2) Å, β = 98.9369(2)°, Z = 4, R_F = 4.2%.

В седьмой части описана методика отбора исходных данных для анализа с помощью полиэдров ВД кристаллохимической роли оксалат ионов в организации структуры кристаллов неорганических и координационных соединений. Отбор первичной информации из баз кристаллоструктурных данных был осуществлен с помощью комплекса структурно-топологических программ TOPOS. Учитывались только те соединения, для которых выполнялись следующие условия: структура кристалла определена с R-фактором < 0.1, при этом отсутствует статистическое размещение атомов, входящих в состав комплексов. В качестве атомов комплексообразователей в структуре кристаллов учитывали любые атомы металла A, валентное усилие s (s = V / KЧ, где V степень окисления атома A) которых в одну связь A-O с кислородом оксалат-иона превышает 0.25. С учетом последнего ограничения соединения типа $R_2C_2O_4$, где R – атом щелочного металла, не рассматривали, так как в их структуре s(R-O) < 0.25. Координационные числа всех атомов в структуре кристаллов определяли по методу пересекающихся сфер.

Указанным условиям удовлетворяли данные о структуре 822 соединений, содержащих в своем составе 1400 кристаллографически разных оксалат-ионов, которые проявляют лишь 15 различных типов координации, схематически изображенных на рис. 2. Согласно полученным данным, в зависимости от типа координации один анион $C_2O_4^{2-}$ образует в структуре кристаллов от 1 до 8 связей О...А (рис. 2). Наиболее часто оксалат-ионы реализуют два из 15 обнаруженных типов координации, а именно: бидентатно-циклический B^{01} -5 и

тетрадентатный K⁰², которые встречаются соответственно в 57 и 33% случаев. Максимальное число металлоциклов, образованных одним лигандом, равно трем (из них два пяти- и один четырехчленный) и возникает при типе координации К⁰³. Отсутствие типов координации, при которых оксалат-ион образует с одним и тем же атомом металла более двух координационных связей, по-видимому, является следствием специфики пространственного строения самих ионов $C_2O_4^{2+}$, для которых характерна плоская структура. обусловленная sp²-гибридным состоянием атомов углерода. Поэтому в структуре большинства соединений диэдрический угол (ф) между плоскостями, проходящими через три атома двух карбоксильных групп аниона $C_2 O_4^{2^-}$, чаше всего равен или близок нулю. Так, для всех 1400 оксалатогрупп, содержащихся в кристаллах 822 рассмотренных соединений, в среднем $\phi = 4(6)^{\circ}$. Большое среднеквадратичное отклонение вызвано тем, что в рассматриваемой выборке наряду с 1056 почти плоскими оксалат-ионами (для них 0 ≤ φ < 6° при среднем $\varphi = 2(2)^{\circ}$) одновременно содержится еще 334 и 10 сортов ионов C₂O₄²⁻, для которых соответственно 6 ≤ φ ≤ 30° и 30 < φ ≤ 89°. В связи с этим заметим, что расстояние между атомами углерода оксалат-иона в среднем равно 1.54(3) Å и отвечает одинарной σ-связи С-С (табл. 3). Поэтому оксалат-ионы, несмотря на sp²-гибридное состояние атомов углерода, являются структурно нежесткими и, в общем случае, должны проявлять способность к вращению карбоксильных групп вокруг σ-связи С-С, изменяя при этом свою конформацию от плоской (φ = 0) до развернутой (φ = 90°).

Из табл. 3 видно, что среднее значение φ зависит от типа координации оксалат-ионов. При этом для тех десяти типов координации (B⁰¹-5, B¹¹, T¹¹, T²¹, K⁰², K⁰³, K¹², K²¹, K²², K⁴²), при которых в структуре кристаллов оксалат-ионы обязательно образуют пятичленные металлоциклы, среднее значение φ не превышает 8° и в пределах 2 $\sigma(\varphi)$ ионы имеют плоскую конформацию. Такая же ситуация наблюдается и в том случае, когда оксалат-ионы не образуют металлоциклов, но связаны сразу с четырьмя (тип K⁴) или восемью (K⁸) атомами комплексообразователями А. Если же пятичленные металлоциклы отсутствуют и при этом оксалат-ион координирован лишь одним или двумя атомами металла, а это возможно только при остальных трех типах координации (M¹, B⁰¹-4 и B²), то средние значения φ увеличиваются до 26-39°.

Третья глава – обсуждение результатов состоит из двух частей. В *первой части* рассмотрены характеристики полиэдров Вороного-Дирихле оксалат-ионов в структуре оксалатсодержащих соединений. При этом объектами исследования явились только 347 соединений, для которых были определены координаты всех без исключения атомов, в том числе и атомов водорода.

Итоговые характеристики полиэдров ВД атомов, образующих в структуре обсуждаемых соединений 419 кристаллографически разных сортов оксалатионов, даны в табл. 4.

Рис. 2. Обнаруженные типы координации оксалат-ионов. Светлые кружки – атомы металла A, черные – атомы кислорода оксалат-ионов. Тонкие линии – координационные связи A – O.

10

Тип координации оксалат-ионов	Число сортов оксалат- ионов	ф , гра д	r(C-C), Å *
B ⁰¹ -5	798	5(4)	1.54(3)
B ¹¹	7	8(7)	1.58(4)
T ¹¹	23	7(5)	1.54(4)
T ²¹	3	3(1)	1.56(1)
K ⁰²	467	1(3)	1.54(3)
K ⁰³	2	6(0)	1.54(0)
K ¹²	11	3(3)	1.55(2)
K ²¹	7	3(3)	1.56(2)
K ²²	39	1(3)	1.55(2)
K ⁴²	2	8(5)	1.58(2)
M ¹	7	39(31)	1.55(2)
B ⁰¹ -4	2	36(1)	1.55(2)
B ²	13	26(36)	1.56(4)
K ⁴	14	5(6)	1.53(4)
K ⁸	5	3(6)	1.51(6)

Таблица 3. Зависимость диздрического угла в ионе C₂O₄²⁻

* Средняя длина связи С-С в оксалат-ионе.

Таблица 4. Характеристики полиэдров ВД атомов С и О в оксалатах

Атом	кч	Число сортов атомов	$\mathbf{N}_{\mathbf{f}}$	$V_{\Pi B \mathcal{A}}, Å^3$	R _{СД} , Å	D _A , Å	G ₃	r(C-O), Å
С	3	809	14(2)	7.9(7)	1.24(4)	0.12(7)	0.120(9)	1.25(3)
0	1	528	18(3)	13.4(2.4)	1.47(8)	0.30(11)	0.097(5)	1.22(2)
	2	1046	18(2)	12.8(1.6)	1.45(6)	0.31(8)	0.097(3)	1.27(3)
	3	35	18(2)	13.9(1.7)	1.49(6)	0.28(6)	0.094(3)	1.25(2)
	1÷3	1609	18(2)	13.0(1.9)	1.46(7)	0.31(9)	0.097(4)	1.25(3)

 N_f - среднее число граней полиэдра ВД; r(C-O) – средняя длина связи в оксалатионе. В скобках даны среднеквадратичные отклонения. Для всех оксалат-ионов в среднем r(C-C) = 1.55(2) Å. В зависимости от типа координации оксалатогрупп их атомы кислорода могут проявлять все КЧ в диапазоне от 1 до 3. Обнаружено, что полиэдры ВД атомов углерода оксалат-ионов имеют в структуре кристаллов от 7 до 22 граней (в среднем 14(2)). Так как атомы углерода находятся в sp²-гибридном состоянии, их полиэдры ВД имеют форму, близкую к искаженной треугольной призме, в которой три большие боковые грани отвечают одной связи С-С и двум связям С-О. Три большие боковые грани призмы «видны» из ядра атома углерода под телесным углом (Ω), который лежит в диапазоне от 23 до 33%. При этом для каждой из двух граней, которые эквивалентны связям С-О, $\Omega \approx$ 31(1)%, а для третьей грани, соответствующей связи С-С, в среднем $\Omega \approx$ 26(1)%. В то же время для многочисленных невалентных взаимодействий среднее значение $\Omega(C...Z)$ равно всего 1(2)%. Чаще всего в роли атомов Z выступают атомы Н и О.

Полиэдры ВД атомов кислорода оксалат-ионов имеют от 11 до 28 граней (в среднем 18(2)) и сложную форму. Во всех случаях, в том числе и при любых КЧ атомов кислорода, самая большая грань полиэдра (для нее $\Omega \approx 31(1)\%$) соответствует связи О-С карбоксильной группы оксалат-иона. Поскольку в 822 рассматриваемых оксалатах в роли комплексообразователей А выступают атомы около 50 разных элементов с КЧ в широком диапазоне от 4 (Ве) до 12 (Sm), длина связей О-А изменяется в очень широком интервале от 1.6 до 2.4Å. Этот факт, в конечном итоге, сказывается на форме полиэдров ВД атомов кислорода и обусловливает сравнительно большие среднеквадратичные отклонения их параметров, указанных в табл. З. В целом полученные данные показывают, что координация оксалат-ионов атомами металлов Α сопровождается небольшим уменьшением объема полиэдра ВД атома кислорода, который по существу не зависит от числа возникших связей О-А. Постоянство объемов полиздров ВД атомов углерода и кислорода обусловливает и постоянство объема «молекулярных» полиэдров ВД (V_L) оксалат-ионов, образующихся при объединении соответствующих атомных полиэдров ВД. Так, согласно полученным данным, для 419 сортов оксалатионов среднее значение $V_L = 68(6)Å^3$, а соответствующая величина $R_{CII} =$ 2.53(8)Å.

Как видно из табл. 4, средняя длина связей С-О в оксалат-ионах равна 1.25(3)Å и практически совпадает с таковой в структуре кристаллов щавелевой кислоты (1.26(5)Å), где для протонированного атома кислорода r(C-O) составляет 1.30(1)Å, а для концевого – 1.21(1)Å. В структуре обсуждаемых оксалатов наиболее короткие связи С-О (1.22Å), которые в пределах $\sigma(r(C-O)) = 0.02Å$ совпадают по длине с двойной связью, отвечают именно концевым атомам кислорода ионов $C_2O_4^{2*}$. Для атомов же кислорода оксалат-ионов, которые образуют координационные связи О-А, расстояния С-О в среднем увеличены до 1.25(2)-1.27(3)Å и в пределах $2\sigma(r)$ совпадают с длиной одинарной связи. В то же время разность между средними значениями длин связей С-О для концевых и мостиковых атомов кислорода оксалат-ионов (0.03-

0.05Å) заметно меньше, чем в щавелевой кислоте (0.09Å). Этот факт, указывающий на эффект выравнивания длин связей С-О и С=О, по-видимому, обусловлен уменьшением ковалентной и усилением ионной составляющей связей С-О за счет образования атомами кислорода координационных связей О-А. Параметром, количественно характеризующим указанное изменение, может служить безразмерная величина степени сферичности полиэдра ВД G₃. Так, для атомов кислорода в щавелевой кислоте G₃ = 0.104, тогда как в структуре обсуждаемых оксалатов G₃ лежит уже в области 0.097 0.094, уменьшаясь с ростом КЧ атомов кислорода (табл. 4) и приближаясь к пороговому значению G₃ = 0.082, ниже которого связи имеют уже преимущественно ненаправленный (ионный) характер.

Во *второй части* рассмотрены особенности строения синтезированных комплексов уранила (табл. 5), обсуждены системы реализующихся водородных связей (табл. 6), с помощью метода пересекающихся сфер проведен анализ кристаллохимической роли внешнесферных катионов и предложены возможные механизмы образования оксалатоуранилатов.

Выяснено, что объем полиздров Вороного-Дирихле атомов урана в синтезированных комплексах, имеющих форму пентагональной призмы, хорошо согласуется со средним значением этой величины 9.2(3) Å³ для атомов U(VI) в кислородном окружении (табл. 5). Межатомные расстояния r(U=O) в уранильных группировках UO_2^{2+} также несущественно отклоняются от среднего 1.78(3) Å и хорошо согласуются со значениями, вычисленными на основании ИК-спектров (табл. 5). В экваториальной плоскости иона уранила расстояния U-O или U-N изменяются соответственно в пределах 2.26-2.47 и 2.32-2.38 Å. Оксалат-ионы во всех соединениях имеют практически плоское строение (диэдрический угол не превышает 7°). Среднее расстояние С-С в исследуемых оксалатоуранилатах составляет 1.54 Å, что характерно для одинарной связи. Длины связей С-О в оксалатных группировках хорошо согласуются с найденным средним значением этой величины 1.25(3) Å. Большое значение объемов ПВД оксалат-ионов в комплексах I, V и VII по сравнению со средней величиной 68(6) Å³ объясняется частичным или полным отсутствием координат атомов водорода в этих структурах.

Комплексы NH₄[(UO₂)(C₂O₄)(NCS)]·2H₂O (V) и K₂[UO₂(C₂O₄)(SO₄)]·3H₂O (VI) имеют цепочечное строение и относятся к кристаллохимической группе $AK^{02}M^1$ (A = UO₂²⁺) комплексов уранила (рис. 3). Поскольку представителем этой же кристаллохимической группы является и [UO₂(C₂O₄)(H₂O)]·2H₂O (VIII), также имеющий цепочечную структуру, аналогичную V и VI, то образование цепей $[UO_2(C_2O_4)(NCS)]$ и $[UO_2(C_2O_4)(SO_4)]^{2-}$ можно рассматривать как результат замещения молекул воды в цепях [UO₂(C₂O₄)(H₂O)] тиоцианат- и изученная структура V является сульфат-ионами. Отметим, что предположения подтверждением P.H. Щелокова 0 экспериментальным способности тиоцианат-ионов селективно вытеснять молекулы воды ИЗ состав уранила, входящих экваториальной в плоскости ионов акваоксалатоуранилатных комплексов.

No		Пентагональная бипирамида UO2O5 или UO2O4N				V _{пвд} , Å ³				
110	Состав соединения	r(U=O), Å	r _{ик} (U=O), Å *	r(U-O _{экв}), [r(U-N _{экв})], Å	r(C-O), Å	r(C–C), Å	φ, °	U(VI)	C ₂ O ₄ ²⁻	
Ι	$K_{2}[UO_{2}(C_{2}O_{4})_{2}\{CO(NH_{2})_{2}\}] \cdot H_{2}O$	1.77-1.78	1.77	2.32-2.39	1.21-1.30	1.54	0-2	9.0	80.4- 92.0	
Π	$(CN_{3}H_{6})_{2}[UO_{2}(C_{2}O_{4})_{2}\{CO(NH_{2})_{2}\}]\cdot H_{2}O$	1.78-1.79	1.78	2.35-2.40	1.22-1.28	1.54-1.55	4-7	9.2	60.0- 69.9	
III	$(CN_{3}H_{6})_{2}[UO_{2}(C_{2}O_{4})_{2}(H_{2}O)]\cdot H_{2}O$	1.81	1.77	2.37-2.41	1.22-1.27	1.56	7	9.3	65.7	14
IV	$(NH_4)_4[(UO_2)_2(C_2O_4)_3(NCS)_2]\cdot 2H_2O$	1.76-1.77	1.76	2.36-2.47 [2.42]	1.22-1.29	1.55	0-5	9.4	66.1- 72.4	
v	$NH_4[(UO_2)(C_2O_4)(NCS)] \cdot 2H_2O$	1.76	1.76	2.42 [2.38]	1.24-1.25	1.54	0	9.3	82.6	-
VI	$K_2[UO_2(C_2O_4)(SO_4)]\cdot 3H_2O$	1.75-1.77	1.77	2.26-2.47	1.24-1.26	1.53-1.54	0	9.3	67.8- 73.2	
VII	$\mathrm{NH}_4[(\mathrm{UO}_2)_2(\mathrm{C}_2\mathrm{O}_4)_2(\mathrm{OH})]\cdot 2\mathrm{H}_2\mathrm{O}$	1.75-1.76	1.76	2.30-2.46	1.24-1.27	1.50-1.52	0	9.3	79.8- 86.8	

Таблица 5. Некоторые геометрические характеристики синтезированных соединений

* $r_{\rm HK}$ определяли по данным ИК спектроскопии по уравнению $r_{\rm HK} = 1.236 + 50.02 \cdot [v_3({\rm UO_2}^{2^+})]^{-2/3}$.

Указанное сходство строения комплексов $[UO_2(C_2O_4)L]^2$, где $L = H_2O$, NCS⁻ или SO₄²⁻, а z соответственно 0, 1 или 2, обусловливает и близкие значения периодов повторяемости (**T**, рис. 3) вдоль оси цепи. Так, значения T для структур V, VI и VIII равны соответственно 11.74, 11.72 и 11.68 Å. Различие значений T обусловлено разной степенью гофрировки цепей, которую можно охарактеризовать величиной угла между плоскостями, проходящими через атомы C и O двух оксалат-ионов, координированных одним и тем же ионом уранила. Как и следовало ожидать, уменьшение значения T при переходе от структуры V к VIII сопровождается ростом угла от 2° для V и 7° для VI до 13° для VIII.

Кристаллы NH₄[(UO₂)₂(C₂O₄)₂(OH)]·2H₂O (VII) являются первым изученным представителем класса гидроксооксалатоуранилатов. С учетом данных о структуре VIII образование слоев [(UO₂)₂(C₂O₄)₂(OH)]⁻ в VII можно рассматривать как результат замещения в цепях VIII координированных молекул воды ионами гидроксила. С помощью кристаллохимических формул такое замещение можно описать схемой:

$$2[UO_2C_2O_4(H_2O)] + OH^- \rightarrow [(UO_2)_2(C_2O_4)_2(OH)]^- + 2H_2O$$

$$2AK^{02}M^1 + M^2 \rightarrow A_2K^{02}M^2 + 2M^1.$$

Хотя указанная взаимосвязь структуры цепочечного комплекса VIII со слоистым VII имеет формальный характер, тем не менее, она проявляется в топологии и метрике уранилоксалатных группировок в структуре кристаллов. Так, в слоях комплекса VII (рис. 1д) последовательно чередующиеся ионы $C_2O_4^{2^-}$ и $UO_2^{2^+}$ образуют бесконечные цепочечные фрагменты (рис. 3), топология которых полностью совпадает с таковой для цепей [UO₂C₂O₄(H₂O)], если из их состава исключить молекулы воды. Значения периода повторяемости Т для указанного фрагмента в комплексе VII равно 11.60Å, а значения диэдрического угла между плоскостями соседних оксалат-ионов, координированных одним и тем же атомом урана, составляет 11.1°.

Рис. 3. Схематичное строение цепи $[UO_2(C_2O_4)\Box]^{2^-}$

Большие серые кружки – атомы урана, маленькие черные – атомы углерода, а светлые – атомы кислорода. Для упрощения рисунка атомы кислорода ионов уранила не приведены. Т – период повторяемости вдоль оси цепи. Квадратами обозначены позиции, которые в структурах V, VI и VIII заняты соответственно изотиоцианат-, сульфат-ионами и молекулами воды, а в VII – атомами кислорода мостиковых ионов гидроксила.

Выяснено, что связывание комплексов $[UO_2(C_2O_4)_2\{CO(NH_2)_2\}]^2$ в структуре I в каркас осуществляется не только за счет электростатических взаимодействий с внешнесферными ионами калия, но и совокупностью водородных связей с участием атомов водорода групп NH₂ молекул карбамида. Так, по данным метода пересекающихся сфер у полиэдров Вороного-Дирихле атомов Н, имеющих от 15 до 17 граней, очень резко выделяются две грани. Самая большая из них (имеет телесный угол в области 32.9-33.3% от полного телесного угла 4π стерадиан и характеризуется пересечением Π₃) соответствует связи N-H. Вторые по величине грани (с телесным углом в интервале 20.4-20.7% и пересечением типа П₁) во всех случаях отвечали водородным связям (табл. 6) с межатомными расстояниями r(H…O) от 1.97 до 2.22 Å и валентными области углами ∠(X-H…O) 173-140°. в Связывание комплексов $[UO_2(C_2O_4)_2 \{CO(NH_2)_2\}]^{2}$ $[UO_2(C_2O_4)_2(H_2O)]^{2-}$ И (II И III) в каркас осуществляется за счет электростатических взаимодействий с внешнесферными ионами гуанидиния, а также за счет образования системы водородных связей, в которых участвуют молекулы воды, аминные группировки гуанидиния и атомы кислорода оксалат-ионов (табл. 6). В структуре IV при объединении в каркас центросимметричных островных двухъядерных группировок [(UO₂)₂(C₂O₄)₃(NCS)₂]⁴⁻, а также при связывании цепей [UO₂(C₂O₄)(NCS)]⁻ (V) в трехмерную структуру, значительную роль играют водородные связи, которые образуются между внешнесферными молекулами воды, ионами аммония и атомами кислорода оксалат-ионов. Положение атомов водорода в комплексе V определить не удалось, поэтому возможным водородным связям предположительно соответствуют взаимодействия типа О···О и О···N с межатомным расстоянием от 2.83 до 2.95 Å. В структуре VI цепи $[UO_2(C_2O_4)(SO_4)]^{2-}$ связываются трехмерный каркас в за счет электростатических взаимодействий с внешнесферными ионами калия и системы водородных связей между молекулами воды и атомами кислорода оксалато- и сульфатогрупп. Связывание слоев [(UO₂)₂(C₂O₄)₂(OH)]⁻ (VII) осуществляется электростатическими взаимодействиями с ионами аммония и водородными связями, в которых участвуют внешнесферные молекулы воды, ионы аммония и атомы кислорода оксалат- и гидроксид-ионов. Наиболее короткие выявленные контакты типа О…О и О…N, которые предположительно отвечают водородным связям, лежат в диапазоне 2.72 - 2.92 Å.

нейтронографического Результаты исследования В согласии С рентгеноструктурным [4] показывают, что основной структурной единицей тригидрата уранила являются кристаллов оксалата цепи состава $[UO_2C_2O_4(D_2O)]$, относящиеся к кристаллохимической группе AK⁰²M¹ (A = UO_2^{2+}) комплексов уранила. Выяснено, что каждый атом водорода (далее D = Н) кроме одной ковалентной связи О-Н с длиной от 0.72 до 1.10 Å образует одну водородную связь типа О-Н···О. Для водородных связей г(О···Н) изменяется от 1.65 до 2.33 Å, а углы О-Н…О лежат в диапазоне 124-172°.

Таблица 6. Параметры водородных связей в синтезированных комплексах

DC.		Число межкомплексных		Число Внутрикомплексные межкомплексных водородные связи		Диапазон			
J₩ō	Соединение	водородни	водородных связей		∠(X-H…O),°	r(H…O), Å	∠(X-H…O),°	Ω(H····O),	
I	$K_{2}[UO_{2}(C_{2}O_{4})_{2}\{CO(NH_{2})_{2}\}]\cdot H_{2}O$	4	2	2.19	145	1.97-3.00	173-140	20.7-10.7	
II	$(CN_{3}H_{6})_{2}[UO_{2}(C_{2}O_{4})_{2}\{CO(NH_{2})_{2}\}] \cdot H_{2}O$	16	4	1.99	152	1.85-2.89	176-93	22.4-10.1	
III	$(CN_{3}H_{6})_{2}[UO_{2}(C_{2}O_{4})_{2}(H_{2}O)] \cdot H_{2}O$	10	1	-	-	1.87-2.58	176-136	23.2-13.5	
IV	$(NH_4)_4[(UO_2)_2(C_2O_4)_3(NCS)_2] \cdot 2H_2O$	10	4	-	-	2.00-2.60	169-113	22.3-11.5	
VI	$K_2[UO_2(C_2O_4)(SO_4)]\cdot 3H_2O$	6	-	-	-	1.96-2.29	174-123	22.5-8.1	
VIII	$[UO_2C_2O_4(D_2O)]\cdot 2D_2O$	6	-		-	1.65-2.33	172-124	22.0-0.2	

Nº	Состав комплекса	r(X…O), Å
V	$NH_4[UO_2(C_2O_4)(NCS)] \cdot 2H_2O$	2.83-2.95
VII	$NH_4[(UO_2)_2(C_2O_4)_2(OH)] \cdot 2H_2O$	2.72-2.92

17

Молекулы воды в структуре $[UO_2C_2O_4(H_2O)] \cdot 2H_2O$ благодаря водородным связям объединяются в спиралеобразные цепи (рис. 4), распространяющиеся вдоль [100].

Рис.4. Схематическое строение цепи, образованной молекулами воды в структуре [UO₂C₂O₄(H₂O)]·2H₂O. Пунктиром обозначены водородные связи между атомами соседних молекул.

Аква-цепи совместно с уранил-оксалатными цепями, проходящими вдоль [101], образуют бесконечные слои состава {[$UO_2C_2O_4(H_2O)$]·2H₂O}, которые распространяются в структуре перпендикулярно трансляции b. Благодаря водородным связям между слоями, последние соединены в трехмерный каркас.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- 1. Проведен синтез, установлены состав, кристаллографические, термографические, ИК и КР спектроскопические характеристики семи оксалатсодержащих соединений уранила. Выполнено рентгеноструктурное исследование монокристаллов синтезированных соединений.
- 2. Выяснено, что изученные соединения принадлежат к четырем разным кристаллохимическим группам комплексов уранила, содержащим в своей структуре одноядерные группировки состава $[UO_2(C_2O_4)_2L]^{2^-}$, где L = H₂O, $CO(NH_2)_2$; двухъядерные комплексы $[(UO_2)_2(C_2O_4)_3(NCS)_2]^{4-}$, цепочечные $[UO_2(C_2O_4)L]^{z-}$, где $L = NCS^-$ (z=1) или SO_4^{2-} (z=2) и слоистые [(UO₂)₂(C₂O₄)₂(OH)]⁻. На примере структуры NH₄[UO₂(C₂O₄)(NCS)]⁻2H₂O образование ураниланионных показано, что цепей состава является экспериментальным $[UO_2(C_2O_4)(NCS)]^{-1}$ подтверждением предположения Р.Н. Щелокова о способности тиоцианат-ионов селективно вытеснять молекулы воды из экваториальной плоскости ионов уранила, входящих в состав акваоксалатоуранилатных комплексов.
- 3. Проведен синтез UO₂C₂O₄·3D₂O и методом нейтронографии порошка установлено положение атомов водорода в структуре. Выяснено, что каждый атом водорода кроме одной ковалентной связи O-H участвует также в образовании одной водородной связи типа O-H…O. Благодаря водородным связям уранилсодержащие цепи соединены в трехмерный каркас {[UO₂(C₂O₄)H₂O]·2H₂O}.
- 4. Установлено, что в структуре цепочечных и слоистых оксалатоуранилатов содержатся топологически однотипные цепи [UO₂(C₂O₄)□]^{2⁻}. Показано, что изменение природы лигандов (H₂O, NCS⁻, SO₄^{2⁻} или OH⁻), занимающих вакантную позицию □ в координационной сфере атома U(VI), практически

- 5. С помощью полиэдров Вороного-Дирихле проведен кристаллохимический анализ соединений, содержащих в структуре кристаллов 1400 разных оксалат ионов. Показано, что в этих соединениях по отношению к атомам комплексообразователям оксалат-ионы проявляют 15 разных типов координации, причем на два из них (К⁰² и В⁰¹) приходится около 90%.
- 6. Обнаружено, что наряду с оксалат-ионами, имеющими практически плоское строение, известны соединения с оксалатными лигандами, карбоксильные группы которых развернуты относительно друг друга на угол, практически достигающий в ряде случаев 90°. Показано, что причиной реализации неплоской геометрии оксалат-ионов в структуре кристаллов являются такие типы координации C₂O₄^{2°}, при которых анионы не в состоянии образовать пятичленные циклы с участием металлов комплексообразователей, внешнесферных одновалентных катионов либо атомов водорода групп NH₂ или молекул воды.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- Blatov V.A., Serezhkin V.N. Stereoatomic model of the structure of inorganic and coordinaton compounds. // Russ. J. Inorg. Chem. 2000. V.45. Suppl. 2. P. S105-S222.
- 2. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. Метод пересекающихся сфер для определения координационного числа атомов в структуре кристаллов. // Журн. неорган. химии. 1997. Т. 42. №12. С. 2036-2077.
- 3. Порай-Кошиц М.А., Сережкин В.Н. Кристаллоструктурная роль лигандов в диаминных комплексонатах. // Журн. неорган. химии. 1994. Т. 39. №7. С. 1109-1132.
- 4. Михайлов Ю.Н, Горбунова Ю.Е., Шишкина О.В. и др. Рентгеноструктурное исследование кристаллов (NH₄)₆[(UO₂)₂(C₂O₄)(SeO₄)₄]·2H₂O и уточнение кристаллической структуры [UO₂C₂O₄·H₂O]·2H₂O. // Журн. неорган. химии. 1999. Т.44. № 9. С.1448-1453.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Михайлов Ю.Н., Горбунова Ю.Е., Артемьева М.Ю. и др. Рентгеноструктурное исследование K₂[UO₂(C₂O₄)₂{CO(NH₂)₂}]·H₂O. // Журн. неорган. химии. 2002. Т.47. №6. С.936-939. 4/0.8.
- 2. Артемьева М.Ю., Михайлов Ю.Н., Горбунова Ю.Е. и др. Кристаллическая структура (CN₃H₆)₂[UO₂(C₂O₄)₂{CO(NH₂)₂}]·H₂O. // Журн. неорган. химии. 2002. Т.47. №11. С.1822-1825. 4/0.8.
- 3. Артемьева М.Ю., Михайлов Ю.Н., Горбунова Ю.Е. и др. Рентгеноструктурное исследование NH₄[UO₂(C₂O₄)(NCS)]·2H₂O. // Журн. неорган. химии. 2003. Т.48. №9. С.1470-1472. 3/0.6.
- 4. Артемьева М.Ю., Михайлов Ю.Н., Горбунова Ю.Е. и др. Рентгеноструктурное исследование NH₄[(UO₂)₂(C₂O₄)₂(OH)]·2H₂O. // Журн. неорган. химии. 2003. Т.48. №9. С.1473-1475. 3/0.6.

- 5. Артемьева М.Ю., Долгушин Ф.М., Антипин М.Ю. и др. Кристаллическая структура (NH₄)₄[UO₂(C₂O₄)₃(NCS)₂]·2H₂O. // Журн. неорган. химии. 2004. Т.49. №3. С.419-422. 4/0.8.
- 6. Артемьева М.Ю., Вологжанина А.В., Ф.М. Долгушин и др. Кристаллическая структура K₂[UO₂(C₂O₄)(SO₄)]·3H₂O. // Журн. неорган. химии. 2004. Т.49. №12. С.2068-2073. 6/1.
- 7. Артемьева М.Ю., Михайлов Ю.Н., Горбунова Ю.Е. и др. Синтез и рентгеноструктурное исследование (CN₃H₆)₂[UO₂(C₂O₄)₂(H₂O)]·H₂O. // Журн. неорган. химии. 2005. Т.50. № 8. С. 1269-1272. 4/0.8.
- 8. Сережкин В.Н., Артемьева М.Ю., Сережкина Л.Б., Михайлов Ю.Н. Кристаллохимическая роль оксалат-ионов. // Журн. неорган. химии. 2005. Т.50. № 7. С. 1106-1117. 12/3.
- 9. Шишкина О.В., Баева Е.Э., Артемьева М.Ю и др. Особенности строения оксалат-, сульфат- и селенатсодержащих комплексов уранила. // Тез. докл. ХХ Международная Чугаевская конференция по координационной химии. Ростов-на-Дону, 2001. С.510-511. 2/0.4.
- **10.** Баева Е.Э., Артемьева М.Ю., Шишкина О.В. и др. Синтез и строение новых оксалатоуранилатов. // Тез. докл. Уральская конференция по радиохимии. Екатеринбург. УГТУ-УПИ, 2001. С.20-21. 2/0.4.
- 11. Артемьева М.Ю. Рентгеноструктурное исследование карбамиддиоксалатоуранилатов калия и гуанидиния. // Тез. докл. II Школа-семинар. Актуальные проблемы современной неорганической химии и материаловедения. Дубна. 2002. С. 5. 1/1.
- 12. Артемьева М.Ю., Долгушин Ф.М. Кристаллическая структура роданооксалатоуранилата аммония. // Тез. докл. Вторая всероссийская молодежная научная конференция по фундаментальным проблемам радиохимии и атомной энергетики. Нижний Новгород, 2002. С. 18. 1/0.5.
- **13.** Артемьева М.Ю., Ахмеркина Ж.В., Михайлов Ю.Н. и др. Кристаллическая структура некоторых роданооксалатоуранилатов. // Тез. докл. III Нац. кристаллохимическая конференция. Черноголовка. 2003. С.157-158. 2/0.4.
- 14. Артемьева М.Ю., Ахмеркина Ж.В., Горбунова Ю.Е. и др. Строение роданооксалатоуранилатов. // Тез. докл. XXI Международная Чугаевская конференция по координационной химии. Киев. 2003. С.195. 1/0.2.
- 15. Артемьева М.Ю., Ахмеркина Ж.В., Горбунова Ю.Е. и др. Синтез и рентгеноструктурное исследование некоторых роданооксалатоуранилатов. // Тез. докл. Четвертая Российская конференция по радиохимии. Озерск. ФГУП «ПО «Маяк»», 2003. С.64-65. 2/0.4.
- 16. Сережкин В.Н., Артемьева М.Ю, Михайлов Ю.Н., Сережкина Л.Б. Кристаллохимический анализ оксалат-ионов в структуре неорганических и координационных соединений с помощью комплекса программ *TOPOS*. // Тез. докл. Всерос. конференция "Химия твердого тела и функциональные материалы 2004". Екатеринбург. ИХТТ УрО РАН, 2004. С.20. 1/0.25.