УДК 621.326.779

ТЕХНИЧЕСКИЕ ОСОБЕННОСТИ АДАПТИВНОЙ АВТОМОБИЛЬНОЙ СИСТЕМЫ ГОЛОВНОГО ОСВЕЩЕНИЯ

Н.А. Ванина, И. В. Лофицкий Самарский университет, г. Самара

По статистике, значительная часть ДТП случается в тёмное время суток. Связано это с тем, что дорога недостаточно освещена, поэтому первостепенной задачей в автомобилестроении является усовершенствование системы активной и пассивной безопасности, а конкретно, головного освещения. Транспорт, оснащённый обычной системой освещения, лишает водителя возможности получать полную визуальную информацию о состоянии дорожного полотна. Дальнейшие улучшения в этой области возможны за счёт модернизации конструкции фар и разработки новых источников света.

Решением этой проблемы является адаптивное освещение. Адаптивные фары жестко не привязаны к кузову автомобиля, и луч света направлен в сторону поворота. Такая конструкция называется AFS (Adaptive Front lighting System), что означает система адаптивного освещения поворотов. Существует ещё система AFL (Adaptive Forward Lighting), в которой световой пучок изменяется под действием внешних условий и сменой типа движения. То есть, кроме положения рулевого колеса учитывается информация, приходящая с различных датчиков на бортовой компьютер. Уже сейчас такие фары можно увидеть на автомобилях марок Audi, Opel, Volkswagen, BMW, Ford, Mazda, Mercedes, и ещё на некоторых европейских и японских моделях.

Вопрос адаптивной системы освещения рассмотрен в патентах компании Ford Global Technologies LLC. В частности, была предложена разработка шаблонов поведения адаптивных фар в зависимости от различных условий. В работах профессора Anamaria Hariton управление системой адаптивного переднего освещения происходит за счёт моделирования и обмена информации по сообщениям, идущим через сеть бортовых контроллеров.

Электронная система управления фарами состоит из: блоков управления, исполнительных механизмов и датчиков. Ситуацию на дороге можно оценивать благодаря различным датчикам. Стоит определиться с наиболее значимыми параметрами, влияющими на изменение положения адаптивных фар.

Во-первых, это направление и скорость движения. Световой поток изменяет своё направление в сторону разворота автомобиля. Правильно подобранный угол поворота фары даёт равномерное световое пятно, без тени. На больший угол поворачивается та фара, которая ближе к стороне

поворота. В случае, когда на пути встречается длинный спуск, луч света приподнимается, освещая следующий подъём. А во время крутого подъёма — опускается, чтобы встречные водители не были ослеплены. Эти параметры определяются при поступлении информации со следующих датчиков:

- Датчик частоты вращения колеса (датчик скорости вращения колеса) фиксирует скорости вращения (числа оборотов) колеса автомобиля.
- Датчик ускорения (акселерометр). Используется совместно с датчиком угловой скорости.
- Датчик угла поворота определяет угловую скорость рулевого колеса, направление поворота и угол поворота.

Во-вторых, погодные условия. В ситуации, когда на улице туман, дождь, снегопад, фары могут работать как противотуманные. Они опускаются так, что поток света не поднимается выше полуметра и не отражается от капель, асфальта, частиц пыли и микрокапель (водновоздушной взвеси из которой состоит туман). Переход фар в такой режим происходит за счёт реагирования датчика дождя и во время длительной работы стеклоочистителей.

В-третьих, общий уровень освещённости. Уберечь встречных водителей от ослепления мощным потоком света можно заставив фары повернуться по вертикали вниз. Когда же автомобили разъедутся, блокфара вернётся в исходную позицию. Уровень яркости излучения, в некоторых автомобилях премиум класса, можно зафиксировать при помощи датчиков освещённости и видеокамер.

Правильно подобранный отражатель и рассеиватель улучшают характеристики источника света. Выделяют три основных типа отражателей: параболоидная схема, FF («Free Form» - свободная форма) схема, DE («Dreiachs Ellipsoid» - трехосный эллипсоид) схема.

Для внешнего основного освещения, а именно передних фар, применятся следующие виды ламп: галогенные, ксеноновые (газоразрядные), светодиодные и лампы накаливания.

Выбор сделан в пользу светодиодных источников света, как наиболее перспективные. В ближайшем будущем у них есть все шансы стать основным источником освещения в автотранспорте.

Список используемых источников

- 1.Ютт, В. Е. Электрооборудование автомобилей [Текст]/ В. Е. Ютт М: Горячая линия-Телеком, 2006. 440 с.
- 2.Пахомова, Е. Э. Конструктивные особенности автомобильных фар головного освещения на светодиодах [Текст]/ Е. Э. Пахомова, В. II. Горкин, Д. М. Якунов // Известия МГТУ. 2014. №2 (20) С.51-54.
- 3.Банников, С. П. Электрооборудование автомобилей [Текст]/ С. П. Банников М.: Транспорт, 1977. 288с.