

Рис. 6 Зависимость погрешности (в километрах) от фазового сляига (в градусах)

Такое расстояние спутник преодолевает чуть более секунды. Если наинатор предназначен для включения передатчиков телеметрической (либо какой-инбудь другой) информации при пролёте над наземным измерительным пунктом, такая погрещность не окажет ощутимого влияния на качество селака связи.

Список использованных источников

 Иванов В. В. Микропроцессорный геомагнитный вычислитель параметров круговой орбиты / Актуальные проблемы радиоэлектроники и телекоммуникаций, материалы Весроссийской НТК- Самара: Изд-во СТАУ, 2009. - С. 195.

Справочник по теоретическим основам радиогехники, / Под ред.
К.Кривицкого. В 2-х т. Т.2. - М.: Эпергия. 1977.

 Левантовский В.И. Механика космического полёта в элементарном изложеник. - М.: Наука, Главная редакция физико-математической литературы, 1980.

РАЗРАБОТКА ЦИКЛИЧЕСКОГО УСКОРИТЕЛЯ Заряженных частиц

А.В. Пияков

Самарский государственный аэрокосмический университет, г.Самара

Для проведения ударных экспериментов используются различные типы ускорителей, однако наиболее "чистыми" являются электростатические и линейные ускорители, в которых ускорение частиц осуществляется энергией электрического поля. Такие ускорители высокоскоростных твёрдых частиц основаны на ускоряющей системе Слоуна – Лоуренса, гле синфазность движения частиц с изменением напряжения на трубках дрейфа достигается путем выполнения дрейфовых трубок разных длин. Они имеют узкий длапазон ускоряемых частиц и небольшое число ускоряющих секций, что обусловлено тем, что данная система не позволяет ускорять частицы в широком диапазоне масс без предаарительной перемастройки геометрии ускоряющего тракта. Кроме того, данному классу ускорителей характерны относительно большие габариты и масса.

Для дальнейшего повышения эффективного ускоряющего напряжения предложена конструктив пиклического ускорителя твердых частиц. В оковоэтого ускорителя лежит принцип лактроданнаического ускорения частиц. Удержание частиц в замкнутом ускоряющем тракте осуществляется посредствам торонадальных дефлекторов. Структурная схема циклического ускорителя пыдеры частиц приведена на рис. 1.

На рис. 1 приняты следующие обозначения: 1- источник питания инжектора, 2 - икточник питания анапряжения (<100кВ), 4 - зарядочувствительный услитель, 5 - ликейный электростатический ускоритель (ЛЭСУ), 6 - вакуумный отсекатель, 7 система вакуумной откаких и контроля вакуума (КВСКВ), 8 - измерительная линейка, 9 - вакуумная камера для экспериментов, 10 - управляемый торональный лефлектор, 11 - линейный электролинамический ускоритель (ЛЭДУ), 12 - система управления ускорителем.

Рис. 1. Структурная схема циклического ускорителя пылевых частиц

Ускоритель работает следующим образом: инжектор частиц выпускает в тракт заряженные частицы с требуемым интервалом следования (примерко 1 частица в секунду). Частица последовательно проходит первую измерительную линейку, ЛЭСУ, вторую измерительную аниейку и попадает в тракт циклического ускорителя. По измеренным временам пролета первой и второй и имерительных линеек, а также заданного напряжения ЛЭСУ, система управления ускорителе вычисляет удельный заряд частицы. Затем частица пролетает несколько кругов по тракту циклического ускорителя, кажый раз ускоряясь в четырех ЛЭДУ. Управляемые тороцальные дефискторы предназначены для искривления траектории частицы. илмерительными линейками, установленными в контуре циклического ускорителя) и удельного заряда частицы, система управления ускорителем управляет высоковольтными усилителями импульсов и высоковольтным усилителем напряжения, которые в свою очередь формируют необходимые напряжения на дрейфовых трубках ЛЭДУ и на обхладках тороидальных дефискторов. В момент достинейня устинией критической скорости (той скорости, при которой максимального выходного напряжения высоковольтного усилителя напряжения становится недостаточно, чтобы дорежатицу в тракте за счет тороиальных дефискторов, процесс ускорения прекращается и частица выводится в вакуумную камеру для жепериментов. ЭВМ предназначена для ведения станови об ускоряемых частидых с помощью специяльно разработанног портамного обсепечения.

Технико-экономическая эффективность использования разработки выражается прежде всего в существенной дешевизие лабораторного моелирования по сравнению с постановкой натурных экспериментов на космических апларатах. Оптимальное применение материалов и ращовальное конструмроватие, основанное на результатах лабораторных жепериментов, позволит увеничить срок службы космических апларатов, более точно прогнозировать их срок службы и надежность. Особенно антральченных для научных экспериментов в дальнем космосе при вучении комст, где плотоность потока тылевых частици вскока.

Расчет скорости и энергии частицы

Эквивалентное ускоряющее напряжение линейного электродинамического ускорителя определяется выражением:

$$U = U_{2ab} \cdot T_0$$
,

где Т_о- время-пролетный коэффициент электродинамического ускорителя; U₂₀ – эффективное ускоряющее напряжение ускорителя.

Эквивалентное ускоряющее напряжение всего ускорителя определяется выражением:

$$U_{\tau} = U \cdot N$$
,

где N — количество пройденных электродинамических ускорителей.

Максимально возможная скорость частицы при этом будет определяться выражением:

$$V_{M4V} = \sqrt{2\frac{q}{m}UT_0 + V_0^2},$$

где q/m- удельный заряд; V₀- скорость частицы на входе.

Максимальное число кругов, которые частица пройдет в ускорителе будет определяться из условия равноденствия центробсжной силы движения частицы в дефлекторе и электростатической силы электрического пола дефлектора. Отклоняющее напряжение можно оценить по формуле:

где $\alpha = \frac{1}{im(R_1 + R_1)}$ - коэффициент геометрии поля;

R₁, R₂- внутренний и внешний радиусы пластин дефлектора.

Рис 2. Зависимость отклоняющего напряжения от эквивалентного ускоряющего напряжения для различных значений а Зазор между пластинами d=1cm

Оценка максимально достижимых скоростей

Максимальная скорость на выходе и максимальное отклоняющее напряжение связаны соотношениями:

$$\begin{cases} \mathcal{V}_{I(4)} = \sqrt{2 \frac{q}{m} \mathcal{L} T_0 + V_0^2} \\ \\ \mathcal{U}_{\mathcal{I}(4)} = \frac{m \cdot V^2}{q \cdot a}. \end{cases}$$

Максимальная напряженность электрического поля аля различных методов обработки поверхности соответственно: 50 кВ/см — механическая обработка; 70 кВ/см — тальваническая, 100 кВ/см — ионная.

Оценка необходимого числа оборотов

Максимальная скорость частицы достигается после некоторого чисва ускорелий. Зависимость требусмого числа ускорений от параметров ускорителя определяется выражением:

$$n_{mg} = \frac{U_{J3\Phi MAX} \cdot \frac{a}{2}}{U},$$

142

где $U_{32\Phi}$ мах Максимально допустимое отклоняющее напряжение; U завиванентное ускортюлисе напряжение линейного электродинамического ускортюля; N_{ee} требуемое число витков.

Рис. 3. График зависимости максимального ускоряющего напряжения от радиуса дефлектора для зазора между пластинами d=1см

Рис.4. Зависимость максимально достижнымой скорости от удельного заряда q/m для различний максимально допустимых отклопялощих напряжениях. Радиус основной трасктории дефектора R-20, инарина запора между пластинами d-см

Рис. 5. График зависимости максимально достижимой скорости от ускоряющего напряжения для различных удельных зарядов q/m. Nums – число витков необходимое для достюжения данной скорости. U_{acceq} - эквивалентное ускоряющее напряжение линейного

электро-динамического ускорителя

Расчет конструкций ускорителя

Расчет характеристик ускорителя двух разных конструкций приведен в табл. 1.

1	аблица	1. Расчет	конструкции	ускорителя

U асс ргв , KV, напряжение предускорителя		100	
N ₉₈₀₅ , количество промежутков электродинамического ускорителя	10	20	
Ugap, kV, ускоряющее напряжение промежутка	10		
U _{вос од} , kV , эквивалентное ускоряющее напряжение электролинамического ускорителя	100	200	
R ₁ m , раднус внутренней пластины дефлектора	1,995 2,005 0,01 200		
R2, m, раднус внешней пластины дефлектора			
d, т, ширина зазора между пластинами			
R, m., раднус внутренней пластины дефлектора R ₂ , m., разнус внешней пластины дефлектора d. m., ширина эзора между пластинами a., коэффициент геометрия поля U _{det} , KV, максимально допустимое отклоняющее апряжение			
U _{def} , kV, максимально допустимое отклоняющее напряжение	5	i0 -	
п, требуемос число ускорений	24	12	
N, требуемое число витков	6	3	
U _{аст} , MV, суммарное ускоряющее напряжение	4,9		

Список использованных источников

 Alexandre Pozwolski. Compact laser-driven accelerator of macroparticles. Laser and Particle Beams 2001, 19.

 Семкин Н.Д., Пияков А.В. Физика волновых процессов и радиотехнические системы. - 2003, том 3. - С. 86.