2.6. разработка методик прогнозирования отдельных характеристик и состояния электрорадиоизделий в целом в условиях глубокого вакуума.

3. Проведение конструкторских и организационных работ.

3.1. Проведение оценочных расчетов срока функционирования ЭРИ с учетом результатов исследования.

3.2. Согласование направлений использования и условий эксплуатации ЭРИ с ЦБП.

3.3. Уточнение перечия перспективной элементной базы для создания анпаратуры, работ оспособной в условиях открытого космоса.

3.4. Формирование технических требований и разработка ТЗ на разработку (доработку) недостающей элементной базы.

3.5. Корректировка НТД на элементную базу или оформление специальных дополнений к НТД.

3.6. Разработка методов испытания, контроля и отбраковки элементной базы для негерметичной аппаратуры.

3.7. Разработка рекомендаций по конструкциям и технологии изготовления негерметичной аппаратуры.

ПОЛУЧЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ГАЗА ВДОЛЬ ОСИ КАНАЛА ФАКЕЛЬНОГО РАЗРЯДА ПРИ ВЗАИМОДЕЙСТВИИ С ТОЛСТОПЛЕНОЧНЫМИ ЭЛЕМЕНТАМИ МИКРОСБОРОК

А. В. Столбиков, М.Н. Пиганов

Самарский государственный аэрокосмический университет имени С.П.Королева, г.Самара

Высокочастотный факельный разряд (ВЧФР), как известно, имеет вил тонкого яркого шнура, окруженного менее яркой оболочкой. При воздействии ВЧФР на толстую резистивную пленку локальный участок последней в месте их взаимодействия будет представлять собой совокупность зон с различными фазовыми и переходными состояниями вещества резистивной пленки. Центральная зона будет областью испаренного вещества резистивной пленки, затем идут зоны интенсивного испарения, переходная к жидкой фазе, плавления и нагрева, где происходит изменение температуры от точки плавления Тп резистивного материала до окружающей среды T₀ в сторону периферийных участков пленки.

Отметим, что взаимодействие факельного разряда происходит вначале с плоской поверхностью и продукты разрушения распределяются по полусфере .В процессе формирования кратера происходит уменьшение угла распределения удаленного за пределы локальной области резистивного вещества. Форма и соотношение размеров кратера зависят от теплофизических характеристик материала. При составлении математической модели учтем конвекцию вдоль оси разряда и излучение оболочки факела в окружающее пространство.

При составлении данной модели удобно применить цилиндрическую систему координат с началом в точке пересечения оси факела с внешней плоской границей пленки. Ось 2 совместим с осью высокочастотного факельного разряда, при этом за положительное направление оси выберем направление распространение разряда. Эта система удобна уже тем, что ни одна из физических характеристик в этом случае не зависят от угла.

Рассмотрим действие высокочастотного факельного разряла (ВЧФР) на резистивную пленку в течении времени T< To, деТо-полное время взаимодействия. Отметим здесь ,что площадь испаряемого участка S и ,а значит и масса этого участка пленки m ио при известной толщине последней h считаются заданными за время то.

Общее уравнение тепловото баланса запишем в следующем

ви div(
$$\lambda_g radT_z$$
) $\tau = \sigma \cdot \tau \cdot E^2 - C_s \rho_g \tau (V_z \frac{\partial T_z}{\partial z} + V_z \frac{\partial T_z}{\partial z}) - \sum_{i=1}^6 Q_i$ (1)

где λ_{ϕ} -теплопроводность факела;

Т.-температура на оси исследуемой области:

σ-электропроводность канала факела;

Е-напряженность электромагнитного поля;

С_в-удельная теплоемкость окружающей среды;

ρ_в -плотность окружающей срелы

V₂, V₁-осевая и радиальная состовляющая скорости конвекционного потока:

Q:-расход энергии на i-ые теплофизические процессы, связанные с изменением агрегатного состояния отдельных зон изучаемого участка пленки в месте взаимодействия с ВЧФР.

Опуская непосредственные выводы Qi,запишем лишь их окончательные выражения.

На испарение ти за т идет

 $Q_l = L_u m_u$

где L_u-удельная теплота испарения резистивного материала:

 $m_u = m_{uo} \tau \tau_o^{-1}$ (3)

(2)

Для нагрева m_n и массы части жидкой фазы пленки зоны интенсивного испарения т_{ил} с Т_л до температуры испарения Т_и необходимо

 $Q_2 = C_{nR}(T_u - T_n)(m_u + k_{1nn}m_{nn}),$ (4)

где k_{інп}-учитывает неравномерность нагрева.

Для плавления резистивного материала и нагрева его до этой температуры имеем ссответствие:

 $Q_3 = L_n[(m_u + k_{1HT} m_{HT}) + k_{1T}m_{T}]$ (5)(6)

и $Q_4 = C_R [m_u + k_{1n\pi} m_{n\pi} + k_{1n} m_{n\pi}] (T_{\pi} - T_0),$

где L_п-удельная теплота плавления материала резистивной пленки;

С_R-его удельная теплоемкость;

m_п-масса расплавляемого участка;

k_{1n}-учитывает неравномерность плавления.

Энергия, идущая на нагрев периферийных участков кратера (локальной области взаимодействия ВЧФР с резистивной пленкой), находится при рассмотрении этой системы в виде: нагретое тело цилиндрической формы-полуограниченный массив.

Имеем:

$$Q_{5} = 2\pi\tau h C_{R}^{2} \rho_{R}^{2} T_{o} (R_{H} - R_{\Pi})^{2} \ln \frac{4h}{R_{U} + R_{\Pi}} [\lambda_{R} - C_{R} \rho_{R} (R_{U} - R_{\Pi}) \ln \frac{4h}{R_{U} + R_{\Pi}}; \quad (7)$$

где R_{H} , R_{Π} , R_{U} -радиусы соответствующих зон;

 λ_{R} -теплопроводимость материала резистивной пленки.

Энергия излучения оболочки факела:

$$Q_{6} = 2\pi\varepsilon\varepsilon_{0}C_{0}lR_{0\phi}(T_{\phi}^{4} - T_{0}^{4})\phi \cdot 10^{-8}; \qquad (8)$$

где R_{0,0}-радиус оболочки свободного факела;

 φ -коэффициент облученности;

є -приведенная степень черноты системы оболочка ВЧФР;

С₀ - коэффициент изучения абсолютно черного тела;

l -расстояние от острия электрода до поверхности резистивной пленки;

 T_{ϕ} -температура факела у острия электрода.

Отметим, что учет взаимодействия частии на молекулярном уровне сильно усложняет математические исследования температурного поля. Получение аналитического решения становится весьма проблематичным, поэтому влияние некоторых процессов отражено не будет. Левую часть (1) в соответствии с [1] и с учетом [2,3] запишем в виде:

$$div(\lambda_{\phi}gradT_{Z}) = \rho_{B} \cdot C_{B} \cdot V_{Z} \frac{\partial T_{Z}}{\partial z} + \rho_{B}V_{Z}^{2} \frac{\partial V_{Z}}{\partial z} + \frac{\partial}{\partial z}(\lambda_{\phi} \frac{\partial T_{Z}}{\partial z}); \quad (9)$$

Рассмотрим случай
$$V_Z = \text{const, т. e} \quad \frac{\partial V_Z}{\partial z} = 0$$
 (10)

Отметим, что радиальной конвек ционной составляющей можно пренебречь [2].

Примем для электропроводности экспоненциальную зависимость от температуры

$$\delta = a e^{BT_z} ; \tag{11}$$

и представим ее в виде ряда

$$\delta = \sum_{n=0}^{\infty} a \, \frac{(bT_z)^n}{n!} \, ; \tag{12}$$

Выразим все массы через m u с помощью k2i-соответствующих

коэффициентов соотношения масс (заметим, что они зависят от соотношения радиусов зон).

(13)

Примем $k_{1i} k_{2i} = K_i;$

С учетом вышеизложенных выражений уравнение (1) имеет вид:

$$\frac{\partial}{\partial z} \left(\lambda_{\phi} \frac{\partial T_{z}}{\partial z}\right) = aE^{2} \sum_{n=0}^{\infty} \frac{\left(bT_{z}\right)^{n}}{n!} - 2\rho_{B} \cdot C_{B} \cdot V_{Z} \frac{\partial T_{Z}}{\partial z} - \varepsilon C_{0} 2\pi R_{0\phi} \varphi \cdot 10^{-8} \left(T_{\phi}^{4} - T_{0}^{4}\right) - \frac{\rho_{R} hS_{U}}{\tau_{0}} \left\{L_{U} + C_{\Pi_{\omega}} \left(T_{U} - T_{0}\right)\right\} + \left[\left(L_{\Pi} + C_{R} \left(T_{\Pi} - T_{0}\right)\right)\left(1 + k_{H\Pi} + k_{\Pi}\right)\right] + \left[\frac{2\pi hT_{0}}{R_{U} + R_{\Pi}} \cdot \left[C_{R} \rho_{R} \left(R_{H} - R_{\Pi}\right)\right]^{2} + \frac{2\pi hT_{0}}{\lambda_{R} - \rho_{R} C_{R} \left(R_{H} - R_{\Pi}\right) \ln \frac{4h}{R_{U} + R_{\Pi}}; \quad (14)$$

Для разрешения вышеописанного дифференциального уравнения относительно T_Z применяются общие методы решения таких уравнений. Решение представляется ввиде суммы общего и частного решений. При нахождении частного решения и коэффициентов в общем решении используются считающиеся известными данные о

 T_{ϕ} -температуре в начальной точке у основания факела и T_0 -в точке $Z_0 = h + h_{\Pi}$.Опуская подробные выкладки поиска решений, окончательный вид распределения T_{χ} по оси Z в удобном для восприятия виде:

$$T_{2} = A \cdot e^{\alpha \cdot z} + B \cdot e^{-\beta \cdot z} + C ; \qquad (15)$$

где

$$A = \frac{T_{0}e \frac{h + h_{\pi}}{2} \left[\sqrt{\left(\frac{2\rho_{e}C_{e}V_{Z}}{\lambda}\right)^{2}} + \sqrt{\frac{4abE^{2}}{\lambda} - \frac{2\rho_{e}C_{e}V_{Z}}{\lambda}} \right] - T_{\phi}}{e^{(h + h_{\pi})} \sqrt{\left(\frac{2\rho_{e}C_{e}V_{Z}}{\lambda}\right)^{2}} + \sqrt{\frac{4abE^{2}}{\lambda} - 1}};(16)$$

$$B = \frac{T_{\phi} \left(\frac{h+h_{H}}{\lambda}\right) \sqrt{\left(\frac{2\rho C V_{Z}}{\lambda}\right)^{2} + \sqrt{\frac{4 \ abE}{2}} + \frac{4 \ abE}{2} + \frac{1}{\lambda}}{\left(\frac{h+h_{H}}{\lambda}\right) \sqrt{\left(\frac{2\rho C V_{Z}}{\lambda}\right)^{2} + \sqrt{\frac{4 \ abE}{2}} - 1}}$$

70

$$+ T_{0}e^{\frac{h+h_{B}}{2}}(\sqrt{(\frac{2\rho C V_{Z}}{\lambda})^{2}} + \sqrt{\frac{4abE^{2}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda})^{2} + \sqrt{\frac{4abE^{2}}{\lambda}} - 1$$

$$+ T_{0}e^{\frac{h+h_{B}}{2}}(\sqrt{(\frac{2\rho C V_{Z}}{\lambda})^{2}} + \sqrt{\frac{4abE^{2}}{\lambda}} - 1 + \sqrt{\frac{4abE^{2}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda}}{1 + \sqrt{\frac{abE^{2}}{\lambda}}} - \frac{2\rho C V_{Z}}{\lambda} - \frac{1}{\lambda}} - \frac{1}{\lambda} + \sqrt{\frac{4abE^{2}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda}}{1 + \sqrt{\frac{abE^{2}}{\lambda}}} - \frac{2\rho C V_{Z}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda}}{1 + \sqrt{\frac{abE^{2}}{\lambda}}} - \frac{2\rho C V_{Z}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda} - \frac{2\rho C V_{Z}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda} - \frac{2\rho C V_{Z}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda} - \frac{2\rho C V_{Z}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda}} - \frac{2\rho C V_{Z}}{\lambda}$$

Литература:

1. Трехов Е.С., Тюрин Е.Л., Фетисов Е.П. К теории высокочастотного факельного разряда в воздуке. В сб.: Физика газоразрядной плазмы.-М.:Атомиздат, 1969. Вып.2. С. 148-155.

2.Качанов А. В., Трехов Е.С., Тюрин Е.Л., Фетисов Е.П. Некоторые вопросы генерации плотных плазменных струй в проточном высокочастотном факельном разряде. В сб.: Физика газоразрядной плазмы.-М.:Атомиздат, 1968. Вып.1. С.52-59.

3. Качанов А. В., Трехов Е.С., Фетисов Е.П. Электродинамическое описание высокочастотного факельного разряда. Там же. С.39-47.