сохраняют отклонение от среднего значения менее ±5 % в условиях факторов негативного влияния на отдельные модули.

Список использованных источников

1. Гейтенко, А.Е. Исследование устройств бесперебойного питания с параллельным соединением инверторов и равнозначным управлением. /А.Е. Гейтенко, О.В. Осипов// Инфокоммуникационные технологии. — 2019. — Т.17. — №4. – С. 419-425.

2. Пат. № 2658621 РФ. Способ управления резервированными модулями источника бесперебойного питания/ А.Е. Гейтенко, Е.Н. Гейтенко:— Бюл. №18, 2018 г.

Гейтенко Александр Евгеньевич инженер АО «ПМК-402» Адрес: 443099, г. Самара, ул. Чапаевская, 114. Тел. +7 (846) 330-10-35. E-mail: mail@pmk402.ru

УДК 621.396.67

ПОЛЕ ВБЛИЗИ КОНТУРА КРУГОВОГО ТОКА

А.А. Балуков, Л. В. Симакова

«Самарский национальный исследовательский университет имени академика С.П. Королева», г. Самара

Исследуется ближнее поле кругового контура радиуса α с электрическим током, в частности, круговой рамочной антенны. Обычно поле и в дальней, и в ближней зоне определяется в дипольном приближении, когда расстояние r до точки наблюдения значительно больше, чем размеры источника ($r \gg \alpha$). В непосредственной близости к источнику дипольное приближение несправедливо, назовем поле этой области прилегающим (рисунок 1). Результаты данного исследования применимы для расчетов устройств, использующих замкнутые токи (например, токовихревые датчики).

В ближней зоне преобладает квазистационарное поле, которое в любой момент времени t совпадает со стационарным полем постоянного тока, соответствующего значению переменного тока в этот же момент t. Это позволяет свести расчет прилегающего поля к расчету стационарного поля.

Начало координат О совместим с центром контура (рисунок 2).

Координаты точки источника Q отмечены штрихами:

сферические координаты $r' = \alpha, \theta' = \frac{\pi}{2}, \varphi';$ цилиндрические координаты $\rho' = a, \varphi', z' = 0;$ радиус-вектор $\bar{r}' = \bar{\rho'}.$

Координаты точки наблюдения Р:

сферические r, θ, φ ; цилиндрические ρ, φ, z ; радиус-вектор \bar{r} .

Рисунок 1 – Зоны излучения

Плотность стороннего источника электрического тока зададим в виде:

$$\dot{j}(\bar{r}') = \bar{1}_{\varphi'} I \delta(\rho' - a) \delta(z' - 0); \ I \approx const, \tag{1}$$

где $\delta(x)$ – дельта-функция Дирака.

Рисунок 2 – Координаты излучателя и точки наблюдения

Для определения поля используем электрический векторный потенциал, выражение для которого является решением уравнения Пуассона:

$$\bar{A}(\bar{r}) = \frac{\mu_a}{4\pi} \int_{V'} \frac{\bar{J}(\bar{r}')}{R(\bar{r}')} d\nu'$$
⁽²⁾

где R – расстояние между точками наблюдения $P(\bar{r})$ и источника $Q(\bar{r}')$ (рисунок 2):

$$R = |\bar{r} - \bar{r}'| = \sqrt{r^2 + \alpha^2 - 2\alpha r \cos \alpha}$$

$$\cos \alpha = (\bar{1}_r, \bar{1}_{r'}) = \sin \theta \cos \psi; \ \psi = \varphi' - \varphi$$
(3)

Переведем орт $\bar{1}_{\varphi'} = \bar{1}_{\psi}$ координат точек источника, по которым ведется интегрирование, в орты координат точки наблюдения $\bar{1}_{\rho}$, $\bar{1}_{\varphi}$, не зависящие от координат точек источника:

$$\overline{1}_{\varphi'} = \overline{1}_{\psi} = -\overline{1}_{\rho}\sin(\psi) + \overline{1}_{\varphi}\cos(\psi)$$

Подставив (1) в (2), и учтя свойство дельта-функции, получим:

$$\bar{A}(\bar{r}) = \frac{\mu_a I}{4\pi} \int_0^{2\pi} \frac{\alpha}{R(\varphi')} d\varphi' = \bar{1}_{\varphi} \frac{\mu_a I \alpha}{2\pi} \int_0^{\pi} \frac{\cos\psi}{R(\psi)} d\psi$$
⁽⁴⁾

В дипольном приближении принимаются допущения:

$$\frac{\alpha^2}{r^2} \ll \frac{\alpha}{r} \ll 1; \ R \approx r \sqrt{1 - \frac{2\alpha}{r} \cos \alpha} \approx r(1 - \frac{\alpha}{r} \cos \alpha);$$

$$\frac{1}{R} \approx \frac{1}{r\left(1 - \frac{\alpha}{r} \cos \alpha\right)} \approx \frac{1}{r} \left(1 + \frac{\alpha}{r} \cos \alpha\right) = \frac{1}{r} \left(1 + \frac{\alpha}{r} \sin \theta \cos \psi\right)$$
(5)

При этом из (4) следует:

$$\bar{A}(\bar{r}) = \bar{1}_{\varphi} \frac{\mu_a l}{2\pi} \frac{\alpha^2}{r^2} \sin \theta \int_0^{\pi} (\cos \psi)^2 d\psi = \bar{1}_{\varphi} \frac{\mu_a l}{4} \frac{\alpha^2}{r^2} \sin \theta$$

Для магнитного поля получим известное выражение магнитного поля диполя с магнитным моментом $p^m = \pi \alpha^2 I$:

$$\overline{H} = \frac{1}{\mu_a} rot \overline{A} = \frac{p^m}{4\pi r^3} (\overline{1}_r 2\cos\theta + \overline{1}_\theta\sin\theta)$$

Запишем последнее выражение в цилиндрической системе координат ρ , φ , *z* в нормированном виде:

$$\bar{h} = \frac{\bar{H}}{H_0} = \frac{1}{2(\tilde{z}^2 + \tilde{\rho}^2)^{5/2}} \{ \bar{1}_{\rho} 3 \tilde{\rho} \tilde{z} + \bar{1}_z (2\tilde{z}^2 - \tilde{\rho}^2) \}, \qquad (6)$$

$$H_0 = \frac{I}{2}; \quad \tilde{\rho} = \frac{\rho}{2}; \quad \tilde{z} = \frac{z}{2}$$

где $H_0 = \frac{I}{2\alpha}; \ \tilde{\rho} = \frac{\rho}{\alpha}; \ \tilde{z} = \frac{z}{\alpha}.$

Определим теперь прилегающее поле точно, без допущений (5). Переведем (3) в цилиндрические координаты:

$$R = \sqrt{\rho^2 + z^2 - 2\alpha\rho\cos\psi} \tag{7}$$

Введем параметр, который называемый далее модулем, и новую переменную интегрирования β:

$$\varkappa^2 = \frac{4\alpha r \sin \theta}{r^2 + \alpha^2 + 2\alpha r \sin \theta} = \frac{4\alpha \rho}{z^2 + (\alpha + \rho)^2}; \ 0 \le \varkappa \le 1$$
$$\beta = \frac{1}{2} (\pi - \psi); \ \cos \psi = \cos(2\beta - \psi) = -\cos 2\beta = 2(\sin \beta)^2 - 1$$

С учетом этого:

$$R = \frac{2\sqrt{\alpha\rho}}{\kappa}\sqrt{1-\varkappa^2(\sin\beta)^2}$$

Интеграл же (4) сведется к комбинации полных эллиптических интегралов 1-го рода К(\varkappa) и 2-го рода Е(\varkappa) с модулем \varkappa . Эти интегралы являются табулированными функциями.

$$K(\varkappa) = \int_0^{\frac{\pi}{2}} \frac{d\beta}{\sqrt{1 - \varkappa^2 (\sin \beta)^2}}; \quad E(\varkappa) = \int_0^{\frac{\pi}{2}} \sqrt{1 - \varkappa^2 (\sin \beta)^2} \, d\beta$$

Таким образом:

$$\bar{A}(\bar{r}) = \bar{1}_{\varphi} \frac{\mu_{a}I}{2\pi} \sqrt{\frac{\alpha}{\rho}} \Big[\Big(\frac{2}{\varkappa} - \varkappa \Big) \mathbf{K}(\varkappa) - \frac{2}{\varkappa} \mathbf{E}(\varkappa) \Big] = \bar{1}_{\varphi} \frac{\mu_{a}I}{2\pi} \sqrt{\frac{\alpha}{\rho}} f(\varkappa);$$
$$f(\varkappa) = \Big(\frac{2}{\varkappa} - \varkappa \Big) \mathbf{K}(\varkappa) - \frac{2}{\varkappa} \mathbf{E}(\varkappa).$$

Выражения для составляющих магнитного поля в прилегающей зоне имеют вид:

$$\begin{split} \overline{H} &= \frac{1}{\mu_a} rot \overline{A} = \overline{1}_{\rho} H_{\rho} + \overline{1}_z H_z; \quad H_{\rho} = -\frac{1}{\mu_a} \frac{dA_{\varphi}}{dz} = -\frac{1}{2\pi} \sqrt{\frac{\alpha}{\rho}} \frac{dx}{dz} \frac{df(\varkappa)}{d\varkappa}; \\ H_z &= \frac{1}{\mu_a \rho} \frac{d(\rho A_{\varphi})}{d\rho} = \frac{1}{4\pi} \frac{\sqrt{\alpha}}{\rho^{\frac{3}{2}}} f(\varkappa) + \frac{1}{2\pi} \sqrt{\frac{\alpha}{\rho}} \frac{dx}{d\rho} \frac{df(\varkappa)}{d\varkappa}. \end{split}$$

Используя справочные соотношения

$$2\frac{dK}{dx} = \frac{E}{x(1-x)} - \frac{K}{x}; \quad 2\frac{dE}{dx} = \frac{1}{x}(E-K); \quad x = x^2;$$

и переходя к нормированной записи через нормированные координаты $\tilde{\rho} = \frac{\rho}{\alpha}$; $\tilde{z} = \frac{z}{\alpha}$, получим:

$$h_{\rho} = \frac{H_{\rho}}{H_0} = \frac{\tilde{z}}{\pi \rho \sqrt{\tilde{z}^2 + (1+\tilde{\rho})^2}} \left\{ \left[\frac{\tilde{z}^2 + \tilde{\rho}^2 + 1}{\tilde{z}^2 + (\tilde{\rho} - 1)^2} \right] E(\varkappa) - K(\varkappa) \right\}$$
(8)

$$h_{z} = \frac{H_{z}}{H_{0}} = \frac{1}{\pi\sqrt{\tilde{z}^{2} + (1+\tilde{\rho})^{2}}} \left\{ K(\varkappa) - \left[\frac{\tilde{z}^{2} + \tilde{\rho}^{2} - 1}{\tilde{z}^{2} + (\tilde{\rho} - 1)^{2}}\right] E(\varkappa) \right\},$$
(9)
где $H_{0} = H_{z}(\rho = z = 0) = \frac{l}{2\alpha}$ – поле в центре контура с током.

Примерная картина векторных линий магнитного поля кругового тока показана на рисунке 3.

На рисунке 5 представлены графики зависимостей h_z (левый столбец) и h_ρ (правый столбец) от $\tilde{\rho}$ при разных значениях $\tilde{z} = const$. Сплошные кривые рассчитаны по точным формулам (8), штриховые – в дипольном приближении по формуле (6). Непосредственно на контуре изза его малой тонкости составляющая h_z обращается в бесконечность (рисунок 4). Радиальная же составляющая h_ρ обращается в ноль в плоскости витка. На рисунке 6 показано смещение нулей $\tilde{\rho}_0$ составляющей $h_z(\tilde{\rho})$ [$h_z(\tilde{\rho}_0) = 0$] и экстремумов $\tilde{\rho}_3$ составляющей $h_\rho(\tilde{\rho})$ [$h_\rho(\tilde{\rho}_3) = maxh_\rho$] по радиальной оси в зависимости от \tilde{z} . Исходя из графиков на рисунке 4, можно сделать вывод, что дипольным приближением разумно пользоваться при $\tilde{z} = \frac{z}{\alpha} \ge 10$. Данная граница весьма условна и подлежит переоценке в каждом конкретном практическом случае исходя из целей решаемой задачи.

Рисунок 3 – Приблизительная структура магнитного поля

Рисунок 4 – Распределение составляющих Н по координатам в плоскости витка

Рисунок 5 – Сравнение дипольного приближения и точной формулы при разных значениях координаты z

Рисунок 6 – Смещение нулей $\tilde{\rho}_0$ составляющей $h_z(\tilde{\rho})$ и экстремумов $\tilde{\rho}_{\vartheta}$ составляющей $h_{\rho}(\tilde{\rho})$ по оси ρ в зависимости от z

Список использованных источников

1 Янке, Е. Специальные функции (Формулы, графики, таблицы) [Текст]/ Е. Янке, Ф. Эмде, Ф. Лёш; под ред. Н.Х. Розова. – М. : Наука, 1964. – 344 с., с илл.

2 Краткий физико-технический справочник, том I [Текст]/ под общ. ред. К.П. Яковлева. – М. : Государственное издательство физико-математической литературы, 1960. – 446 с.

3 Полухин, Ю.Н. Излучение электромагнитных волн: учеб. пособие [Текст]/ Ю.Н. Полухин. – Самара: Изд-во СГАУ, 2016. – 156 с.

Балуков А.А., 8(927)295-20-38, balukov_98@mail.ru

Симакова Л. В., 8 (922) 864-29-38, lidulka.simakova@gmail.com

УДК 621.389

РАЗРАБОТКА ОДНОКАНАЛЬНОГО УЛЬТРАЗВУКОВОГО РАСХОДОМЕРА ВРЕМЕНИ ПРОХОЖДЕНИЯ СИГНАЛА ДЛЯ ЖИДКОСТИ

А.А. Кобелев, А.Н. Агафонов, В.С. Бут «Самарский национальный исследовательский университет имени академика С.П. Королёва», г. Самара

Развитие технологии, ужесточение требований по ресурсосбережению, обращение к экологически чистым производствам, рост цен на энергоносители ведут к необходимости все более широкого применения приборов, предназначенных для измерения расхода жидких сред [1]. Для данных целей успешно применяются различного типа расходомеры.