$$\omega_{DR} = \frac{2\omega_0}{c} \cdot V_R$$

где V_R ; ω_{DR} — соответственно, составляющая мгновенной линейной скорости по отношению к неподвижному датчику и доплеровская частота, обусловленная круговым движением ротора турбины;

 ω_{θ} – рабочая частота генератора;

с – скорость света.

При возникновении крутильных колебаний ротора, частота Доплера меняется пропорционально скорости этих колебаний.

$$\omega_D(t) = \frac{2\omega_0}{c} \cdot (V_R + V_L) = \omega_{DR} + \omega_{DL}$$

 V_L ; ω_{DL} — соответственно составляющая мгновенной линейной скорости по отношению к неподвижному датчику и доплеровская частота, обусловленная крутильным колебанием ротора турбины.

Затем полученный сигнал с датчиков, по заданным алгоритмам обрабатываются на персональном компьютере, в результате чего получают численные значения амплитуды и частоты крутильных колебании и биений вала ротора.

Таким образом, измеряя параметры крутильных колебаний можно ускорить доводку турбины на стадиях испытания и выбирать наиболее подходящий режим во время ее эксплуатации.

УДК 531.781.2(079.4)

ОПТОЭЛЕКТРОННЫЙ СПОСОБ БЕСКОНТАКТНОГО КОНТРОЛЯ УГЛОВОГО ПОЛОЖЕНИЯ ПОВЕРХНОСТИ

С.А. Данилин, А.Ж. Чернявский

г. Самара, «Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)»

В настоящее время актуальной является проблема бесконтактного определения углового положения поверхности. Обеспечение высокой точности при изготовлении поверхностей изделий влечет увеличение их эксплуатационного ресурса, что обуславливает необходимость разработки экономичных и эффективных бесконтактных автоматизированных средств диагностики и контроля углового состояния поверхности изделия. Наиболее ответственными контролируемыми узлами являются места, где

точность в определении профиля поверхности достигает единиц микрометров. Для определения статических параметров профилей поверхностей разработаны различные методы и аппаратура, которые можно классифицировать на две группы: контактные и бесконтактные.

К первой относятся механические методы, в основе которых лежит ощупывание поверхности с помощью иглы (профилометр), а также сканирующего наноразмерного зонда или кантилевера. Ко второй группе относятся оптические приборы контроля интерференционные, рефлектометрические. Здесь рассмотрен модернизированный способ и устройство бесконтактного контроля углового положения поверхности на основе авторского свидетельства [1], суть которого заключается в том, что контролируемую зеркально-отражающую поверхность. формируют поток излучения, получают опорный и измерительные потоки. После чего регистрируют отраженные потоки излучения, а так же проводят преобразование последних в электрические импульсы и по временному интервалу между серединами электрических импульсов определяют угловое положение контролируемой поверхности (рис. 1)

Следует, отметить, что известный способ и устройство имеет узкий диапазон измеряемых угловых положений контролируемой поверхности, обусловленный ограниченной длительностью совместного существования излученного и отраженного световых потоков, что в свою очередь определяется конструктивно - технологическими соотношениями размеров приемно-передающего коллектора и световода оптической насадки. Расширение диапазона измеряемых угловых положений контролируемых поверхностей достигается за счет установки дополнительных световодов в оптическую насадку.

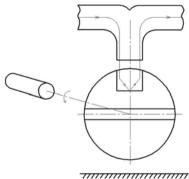


Рисунок 1 - Принцип работы прототипа устройства

Сущность изобретения поясняется чертежами, где на рисунке 2 представлена структурная схема устройства, на рисунке 3 представлены геометрические построения, определяющие величину угла β .

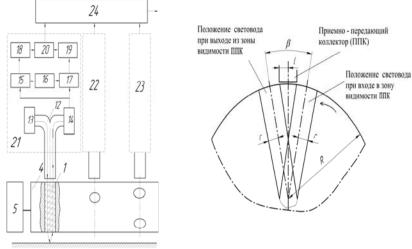


Рисунок 2 - Структурная схема устройства

Рисунок 3 - Определение угла β

Предложенный способ и устройство для его реализации позволяют расширить диапазон измеряемых угловых положений контролируемых поверхностей в 3 раза за счет дополнительного введения световодов в оптическую насадку и, как следствие повысить качество измерений за меньшее количество потраченного времени.

Список использованных источников

1 Патент №1682784 А1 СССР МПК G01B21/22. Способ определения угловых положений поверхности объекта и устройство для его осуществления [Текст]/ Данилин А. И., Медников В.А., Прохоров С.П.; заявитель КуАИ им. С.П.Королева.