активных этапах их жизненного цикла. Для этого необходима реализация электромагнитно-ориентированного технологии системного сопроектирования сопровождения всех фаз сосушествования И корабельных РЭС и объектов-носителей. Ведущую роль в этом процессе играет стадия проектирования ТОМБ, которая задаёт правильность принимаемых организационно-технических решений и определяет объём возможных издержек впоследствии. Качество закладываемых инженернотехнических решений для решения указанных проблем закладывается именно на стадии проектирования ТОМБ.

Таким образом расчётно-оценочная экспертиза ТОМБ по прогнозируемым уровням ЭфЭС является ключевым этапом качественного выполнения проекта.

Список использованных источников

2. Бурутин А.Г., Балюк Н.В., Кечиев Л.Н.. Электромагнитные эффекты среды и функциональная безопасность радиоэлектронных систем вооружения // «Технологии электромагнитной совместимости»: Научно-технический журнал. – 2010, № 1 (32). – С. 3-27.

УДК 621.372.54 ФИЗИЧЕСКАЯ РЕАЛИЗАЦИЯ КОЛЕБАТЕЛЬНОЙ СИСТЕМЫ ДРОБНОГО ПОРЯДКА

А.Х. Гильмутдинов¹, В.А. Мокляков², П.А. Ушаков³ ¹Казанский национальный исследовательский технический университет им. А.Н. Туполева ²Нижегородский государственный технический университет им. Р.Е. Алексеева ³Ижевский государственный технический университет им. М.Т. Калашникова

Известно, что многие процессы в электрохимии, биологии, физике, характеризуются динамикой дробного порядка, которая математически описывается дифференциальными уравнениями дробного порядка [1]. Для аналогового моделирования таких процессов в настоящее время широко используются элементы с фрактальным пмпедансом (ЭФИ), которые можно реализовать различными спобобами: в виде электрохимических ячеек, в виде лестничных *RC*-цепей, в виде многослойных *RC*-элементов с распределенными параметрами и др. Такие элементы относят к классу фрактальных конденсаторов, поскольку они характеризуются импедансом вида $Z_F = 1/(p^{\alpha}C_{\alpha})$, где p – комплексная частота, α – вещественное положительное число меньшее единицы.

Для моделирования систем с колебательными характеристиками и дробной динамикой необходимо дополнить эти элементы элементами, импедансы которых имеют вид $Z_F = p^{\beta}L_{\beta}$, где β – вещественное положительное число меньшее единицы, и фактически являются фрактальными индуктивностями. Наиболее простым способом реализации фрактальной индуктивности является использование конверторов импеданса, нагруженных на фрактальную емкость. Характеристики колебательных фрактальных систем были исследованы в работах [2, 3] с помощью компютерного моделирования.

Целью данной работы является проверка возможностей физической реализации фрактальной колебательной системы, используя образцы элементов с фрактальным импедансом, конструкция которых была предложена в работе [4] и изготовлена по толстопленочной технологии. Фотография образца ЭФИ изображена на рисунке 1.

Рисунок 1 – Фотография толстопленочного образца ЭФИ

ФЧХ импеданса данного ЭФИ имеет следующие параметры: уровень постоянства фазы $\varphi_c \pm \Delta \varphi = -40 \pm 2^\circ$ в диапазоне частот от 622 до 10400 Гц. По этим значениям вычислены параметры ЭФИ: фрактальная емкость $C_{\alpha} = 1,12 \cdot 10^{-8} \text{ Ом}^{-1} \text{ с}^{0.444}$ и $\alpha = -0.444$.

На рис. 2, *а* изображена схема конвертора импеданса на ОУ (LM358N) с включенным в нее образцом ЭФИ (рис. 1). На рис. 2, *б* представлен график измеренной ФЧХ импеданса на входе ОУ DA1. Номиналы резисторов R1 – R4 одинаковы и равны 50 кОм.

Видим, что измеренный импеданс характеризует фрактальную индуктивность, дуальную используемой фрактальной емкости, образца ЭФИ. Параметры фрактальной индуктивности, найденные по данным этой характеристики ($\varphi_c \pm \Delta \varphi = 40 \pm 2^\circ$ в диапазоне частот от 622 до 10400 Гц), следующие: $L_{\beta} = = 27,94$ Ом с^{-0,444}, $\beta = 0,444$.

На основе образца ЭФИ и фрактальной индуктивности был создан прототип фрактальной колебательной системы, фотография которого показана на рисунке 3.

Рисунок 2 – *a* – схема, обладающая фрактальным импедансом; *б* – ФЧХ импеданса

1 - образцы ЭФИ, 2 - плата с элементами схемы, 3 - станция NI ELVIS

Рисунок 3 – Стенд для моделирования фрактальной колебательной системы

АЧХ входного импеданса колебательной системы изображена на рисунке 4.

Рисунок 4 – АЧХ импеданса колебательной системы

Частота резонанса составила 660,7 кГц, а добротность - 6,75.

Таким образом, на практике продемонстрирована возможность создания аналоговой модели фрактальной колебательной системы.

Список использованных источников

1. Учайкин В.В. Метод дробных производных / В.В. Учайкин – Ульяновска: Издательство «Артишок», 2008. – 512 с.

2. Ушаков П.А., Князев А.В. Фрактальный параллельный колебательный контур с использованием GIC – схемы // Современные инструментальные системы, информационные технологии и инновации: сб. науч. трудов XI-ой Международной научно-практической конференции 19 – 21 марта 2014 года в 4 томах. Том 4. Курск: Изд-во ЗАО «Университетская книга», 2014. С. 230 – 234.

3. Todd J. Freeborn, Brent Maundy, Ahmed Elwakil. Fractional Resonance-Based $RL_{\beta}C_{\alpha}$ Filters // Mathematical Problems in Engineering, Volume 2013. Hindawi Publishing Corporation. – 10 p.

4. Ushakov P.A., Maksimov K.O., Filippov A.V. Research of fractal thickfilm elements frequency responses // in Proc. 11th Int. Conf. Seminar on Micro/Nanotechnologies and Electron Devices, (Novosibirsk June 30 - July 4, 2010), NSTU, 2010. C. 165–167.

УДК 621.396.41 ОПТИМИЗАЦИЯ ПАРАМЕТРОВ МНОГОКАЛЬНОЙ ЦИФРОВОЙ СИСТЕМЫ СВЯЗИ ПРИ КОДОВОМ УПЛОТНЕНИИ СИГНАЛОВ

Е.Е. Зейнулла, В.А. Глазунов

г. Самара, «Самарский национальный исследовательский университет имени академика С.П. Королёва»

С развитием высоких технологий в микроэлектронике и других науках возникает необходимость применения более надежных, точных,