Быстрое вейвлет-преобразование выполняется по алгоритму Малла с использованием ВЧ и НЧ фильтров, соответствующих вейвлету Добеши четвертого порядка. Таким образом, каждое слово является изображением в признаковом пространстве, сформированном значениями энергии выходов шести вейвлет-фильтров, и представляется в виде матрицы с шестью строками и количеством столбцов, зависящем от длины слова. Эти данные могут использоваться в системе распознавания в качестве параметров, характеризующих произнесенное слово.

АЛГОРИТМ РАСПОЗНАВАНИЯ ПРОСТЕЙШИХ РЕЧЕВЫХ КОМАНД

С.Л. Литвиненко, В.П. Шевчук Волжский политехнический институт, г. Волжский

В настоящее время широкое распространение получают системы распознавания речевых команд, используемые в различных встраиваемых системах управления: от систем управления бытовой техникой до систем управления роботизированнымы комплексами.

Главным требованием к таким системам распознавания речи является минимизация стоимости аппаратной реализации функций распознавания речевых команд. При этом требуется небольшой словарный запас, простота обучения, настройки и использования системы.

Полобные системы распознавания коткосто последовательного сравнения произнесенного диктором слова или фразы с записанными в памяти эталонами. В наиболее простых системах каждое слово представляется своим спектром, полученным с использованием преобразования Фурье или линсйного предсказания речи, сравнение слов с производится с помощью алгоритма линамического программирования. В более сложных системах помимо этого используется представление слов в виде наборов состояний «Скрытых Марковских моделей», что позволяет перейти к статистическим методам распознавания и повысить качество распознавания, однако усложняет не столько саму систему, сколько процесс ее обучения, так как в этом случае требуется обучающих баз данных, содержащих сегментированные лингвистами слова и фразы. Поэтому в компактных системах распознавания, где не требуется большой размер словаря, и существенно важна возможность перенастройки системы под конкретного пользователя и конкретный словарный запас, выгоднее использовать первый вариант.

Однако в случае использования системы для распознавания простейших речевых команд, состоящих из одного двух слов существует способ еще большего упрощения системы распознавания речи — это

использование на стадии параметризации сигнала вейвлет-преобразования, алгоритм быстрого вычисления которого намного проще алгоритма быстрого преобразования Фурье или линейного предсказания, которые к тому же вычисляется для набора фрагментов (окон) сигнала, тогда как быстрое вейвлет-преобразоване вычисляется для сигнала в целом. Алгоритм распознавания речи на основе вейвлет-преобразования сигнала показан на рис. 1.

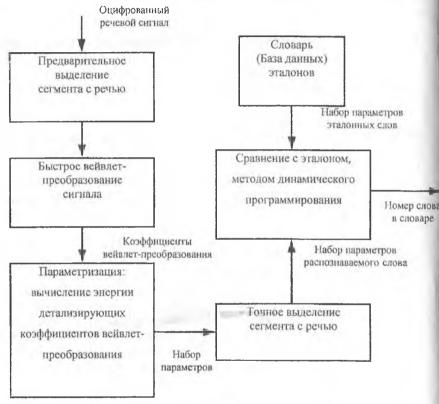


Рис. 1. Структура алгоритма распознавания речевых команд

Ha основе данного алгоритма была разработана программа распознавания речевых команд использующая базу данных вейвлетпараметризованных эталонных слов, входящих В команды системы управления роботом. Для надежного распознавания используются несколько вариантов произношения каждого слова, входящего в команду, для одного или нескольких дикторов. Bce возможные реализации одного слова класс. Распознавание объелинены ОДИН команл производится ПО

сповам. Слова распознаются с применением метода динамического программирования, с помощью которого производится вычисление рисстояний между произнесенным словом и всеми эталонными реализациями слов, допускаемыми контекстом данной команды. Произнесенное слово соотносится с тем классом, для которого среднее по классу расстояние, является минимальным.

СТРУКТУРА СИСТЕМЫ УПРАВЛЕНИЯ РОБОТОМ ПО АУДИО ИНФОРМАЦИИ

С.Л. Литвиненко, В.П. Шевчук Волжский политехнический институт, г. Волжский

система представляет собой программный комплекс. позволяющий транслировать короткие фразы, соответствующие речевому обозначению команд, в коды команд системы управления роботом (см. рис. 1). Речевое управление роботом рассматривается как дополнительный орган позволяющий увеличить количество команд подаваемых одновременно, задействовав не только руки человска-оператора, но и его речевой аппарат. Речевое управление может использоваться и в том случае, если руки человека задействованы для выполнения опсраций не связанных с подачей команд системе управления роботом, а также, если по какой-либо затруднительно воздействовать человеку руками управления, например, если он находится в скафандре.

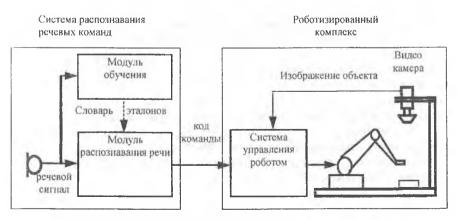


Рис. 1. Функциональная схема системы управления роботом по аудио информации