ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

УДК 621.374.335.2

Л.Э.Вилоп

КОММУТАТОРЫ С АКТИВНОЙ КОМПЕНСАЦИЕЙ ОСТАТОЧНЫХ ПАРАМЕТРОВ В ПРЕОБРАЗОВАТЕЛЯХ НА ОСНОВЕ МЕТОДОВ ТЕСТОВЫХ ПЕРЕХОДНЫХ ПРОЦЕССОВ

(г. Куйбышев)

Предложенная П.Майклом /I/ схема активной компенсации остаточных параметров (АКОП) бесконтактных ключевых элементов (КЭ) нашла широкое применение в коммутаторах напряжения питания датчиков(КНПД) /2, 3, 4/. В групповых преобразователях с резисторными датчиками такие коммутаторы сочетают в себе надежность коммутаторов на бесконтактных КЭ с величинами остаточных параметров (ОП) коммутаторов на контактных КЭ, обладая в сравнении с последними более высоким быстродействием. Эквивалентные ОП КЭ в этом случае с достаточной степенью точности определяются соотношениями /5/ $C_{3K} = C_{KS}/K_O$, $Z_{3K} = Z_{KS}/K_O$, Где K_O - коэффициент усиления используемого в коммутаторе операционного усилителя (ОУ).

В преобразователях на основе методов - тестовых переходных процессов (МТПП) /6, 7/ КНПД работает не в установившемся режиме, и при его анализе необходимо учитывать инерционность ОУ. Учет этого фактора необходим также при анализе входного коммутатора (ВК) с АКОП /8, 9/, используемого в групповом интегрирующем преобразо вателе для индуктивных датчиков /IO/.

В статье проводится анализ КНПД и ВК с АКОП КЭ, оценивается влияние КЭ схемы коммутации с АКОП на статическую характеристику интегрирующего преобразователя с индуктивными датчиками.

Структура КНПД (рис. I) представляет собой компенсационный стабилизато: ояжения последовательного типа, к выходу которого подключены : КЭ. Напряжение обратной связи снимается с выходов КЭ и через дополнительный коммутатор на полевых транзисторах, которые управляются синхронно с КЭ, подается на инвертирующий вход

Р и с. І. Коммутатор напряжения питания датчиков

ОУ стабилизатора. К неинвертирующему входу ОУ подключен источник ЭДС Е, задающий амплитуду импульсов на выходах коммутатора.С целью предотвращения насыщения ОУ в интервалах между формируемыми импульсами напряжения замыкается дополнительный КЭ K_{Z} .

Для идеального ОУ амплитуда импульса на нагрузке равна E и не зависит от параметров КЭ и величины остаточного сопротивления полевых транзисторов ключей обратной связи K_{OC} . Параметры реальных ОУ ($K_O \neq \infty$, $\mathcal{J}_{BX} \neq O$, $\mathcal{C}_{CM} \neq O$, $\mathcal{R}_{BO|X} \neq O$, $\mathcal{J}_{FD} \neq \infty$, не позволяют исключить влияние остаточных параметров КЭ полностью. Это влияние может быть учтено с помощью эквивалентных ОП.

Для определения эквивалентной остаточной ЭДС воспользуемся эквивалентной схемой (рис. 2). При С_Н = О для ЭДС на выходе стабилизатора можно записать

EBOIX = (Com + E - UH + JEX ZKOCi + CKOCi)KO,

 $\mathcal{E}_{\mathcal{B}\mathcal{B}\mathcal{I}\mathcal{X}} = U_{\mathcal{H}} + \mathcal{I}_{\mathcal{B}\mathcal{X}} \mathcal{Z}_{\mathcal{K}\mathcal{I}\mathcal{I}} + \mathcal{C}_{\mathcal{K}\mathcal{I}\mathcal{I}} + \mathcal{I}_{\mathcal{B}\mathcal{X}} \mathcal{R}_{\mathcal{B}} \ ,$

где Яя - выходное сопротивление стабилизатора,

Рис. 2. Эквивалентная схема КНПД для определения Сакв

откуда разность $E - U_{H} = C_{0} \delta u_{i} + C_{3} \kappa \delta_{i}$,

где $\mathcal{C}_{OOU} = \frac{E + \mathcal{I}_{BX} R_{B}}{1 + K_{O}} + \mathcal{C}_{OM} \frac{K_{O}}{1 + K_{O}} - ЭДС, создаваемая узлами коммута-$ тора, общими для всех каналов, иустраняемая введением схемы

an-

$$\mathcal{C}_{\mathcal{GKB}} = \frac{\mathcal{J}_{\mathcal{B}_{\mathcal{K}}} \mathcal{Z}_{\mathcal{K}\mathcal{G}i} + \mathcal{C}_{\mathcal{K}\mathcal{G}i}}{1 + K_{\mathcal{O}}} - \left(\mathcal{J}_{\mathcal{B}_{\mathcal{K}}} \mathcal{Z}_{\mathcal{K}\mathcal{O}\mathcal{C}i} + \mathcal{C}_{\mathcal{K}\mathcal{O}\mathcal{C}i}}\right) \frac{K_{\mathcal{O}}}{1 + K_{\mathcal{O}}} - \text{эквивалентная остаточная ЭДС КЭ КНПД с АКОП.}$$

При использовании ОУ с полевыми транзисторами на входе и МОПтранзисторов в качестве ключей обратной связи можно положить Эрг =0, $\mathcal{E}_{KOC_i} = 0$, тогда $\mathcal{E}_{3K\mathcal{B}_i} = \frac{\mathcal{E}_{KOi}}{1 + K_0} \approx \mathcal{E}_{KSi} / K_0$. При $i_H \neq 0$, $di_H / dt \neq 0$ потенциал на выходе КЭ зависит от

величины тока, а вследствие инерционности ОУ и от скорости его ИЗМенения.

Положив в схеме рис. 2 равными нулю ССМ , Е, Лях , Скозі, Скосі 2 кос: , получим эквивалентную схему для определения выходного сопротивления коммутатора (рис. 3). Для нее можно записать

$$\mathcal{G}(\rho) = \mathcal{J}(\rho)(R_{\mathcal{B}} + \mathcal{Z}_{\mathcal{K}\mathcal{G}_{\mathcal{L}}}) + \mathcal{E}_{\mathcal{B}\mathcal{S}\mathcal{I}\mathcal{K}}(\rho), \tag{I}$$

где $\mathcal{E}_{\mathcal{B}_{b}/\mathcal{X}}(\rho) = \mathcal{K}(\rho) \mathcal{G}(\rho).$

Подставив $E_{S_{0},x}(p)$ в выражение (I) и учитывая, что K(p) ==-Kn/(1+рТоу), получим

$$\mathcal{G}(p) = \mathcal{I}(p)(R_{\theta} + Z_{K_{\theta}i}) - \frac{K_{\theta}}{1 + p \tau_{oy}} - \mathcal{G}(p),$$

откуда

$$\mathcal{G}(p) = \mathcal{J}(p)(R_{g} + Z_{KS_{L}}) \frac{\rho + \frac{1}{z_{OY}}}{\rho + \frac{1+K_{O}}{z_{OY}}} . (2)$$

Представление ОУ опериодическим звеном обусловлено необходимостью устойчивости, которой должен обладать коммутатор при работе с различными нагрузками. С этой целью в коммутаторе используют полностью скорректированные ОУ или ОУ, позволяющие при помощи внешней коррекции сформировать требуемую частотную характеристику.

Рис. 3. Эквивалентная схема КНПД для определения Z_{Bolk}(р)

При единичном скачке тока напряжение (2) определяет операторное эквивалентное сопротивление КЭ

$$Z_{\mathcal{J}\mathcal{K}\mathcal{B}_{i}}(\rho) = (R_{\mathcal{B}} + Z_{\mathcal{K}\mathcal{I}_{i}}) \frac{\rho + \frac{1}{\overline{z_{\mathcal{J}\mathcal{Y}}}}}{\rho(\rho + \frac{1 + K_{\mathcal{D}}}{\overline{z_{\mathcal{D}\mathcal{Y}}}})}$$
(3)

В момент времени t = -

$$Z_{gKB_i}(t=0) = \lim_{p \to \infty} p Z_{gKB_i}(p) = R_g + Z_{KB_i}$$

В установившемся режиме (при t= ~)

$$Z_{3\kappa}\mathcal{B}_i(t=\infty) = \lim_{p \to 0} p Z_{3\kappa}\mathcal{B}_i(p) = \frac{R_{\mathcal{B}} + Z_{\kappa}\mathcal{B}_i}{1+K_0} \, .$$

Зависимость напряжения на КЭ от времени при единичном скачке тока определяется оригиналом выражения (3)

$$\mathcal{U}_{K\mathcal{I}}(t) = \frac{R_{\mathcal{B}} + Z_{K\mathcal{I}}}{1 + K_0} \left[1 + K_0 e^{-\frac{1 + K_0}{T_{oy}} t} \right].$$

Уменьшение \mathcal{U}_{K9} происходит экспоненциально с постоянной времени $\mathcal{T}_{OY}/(1+K_o)$. При использовании в качестве КЭ биполярных транзисторов и типичных значениях $\mathcal{R}_{S} = I \text{ Ом}, \mathcal{Z}_{K92} = 2,5 \text{ Ом}, K_o = 50000 \text{ и}$ $\mathcal{T}_{OY} = I5,9 \text{ мс}$ (ОУ типа 544УДІА с $\mathcal{F}_{TP} = I0 \text{ Гц}) \mathcal{U}_{K9}$ за 3 мкс уменьшается от 3,5 В до 3,5 мВ.

Несложно заметить, что $\mathcal{Z}_{\mathcal{H}\mathcal{K}_{i}}(\rho)$ определяется выражением, соответствующим $\mathcal{Z}(\rho)$ двух полюсника, показанного на рис. 4, где

 $R_{1} = R_{f} + Z_{K_{3i}}, R_{2} = (R_{f} + Z_{K_{3i}})/K_{0},$ $L_{3K_{3i}} = (R_{f} + Z_{K_{3i}})T_{0y}/K_{0}.$

Для приведенных выше значений параметров КЭ и ОУ $R_1 = 3,5$ Ом, $R_2 = 70$ мкОм, $L_{garbi} =$ =I,I мкГ.

Соединенные последовательно двухполюсник Z(P) и источник ЭДС Сэх 8: составляют полную эквивалентную схему КЭ КНПД с АКОП.

Рис. 4. Двухполюсник, эквивалентный Z_{RAIX}(р) В групповом интегрирующем преобразователе /7/ дополнительная коммутация по входу интегра тора позволяет использовать в качестве КЭ КНПД биполярные транзисторы в режиме насыщения, ис-

ключает взаимное влияние наналов и прохождение на вход интегратора выбросов тока, возникающих от ЭДС самоиндукции катушек датчика при размыкании КЭ КНПД. Уменьшение влияния ОП используемых в качестве КЭ ВК МОП-транзисторов достигается применением ВК с АКОП /8,9/,структура которого приведена на рис. 5.

Рис. 5. Входной коммутатор

Для того, чтобы ОП КЭ ВК не влияли на выходной ток измерительной цепи (ИЦ), в таком коммутаторе производится стабилизация потенциала Убл на заданном, в частности, нулевом уровне. С этой целью Убл. через ключ передачи потенциала К пл: подается на инвертирующий вход ОУІ. Так как ОУІ цепью - эквипотенциальные входы ОУ2 🛩 КЭ; -- Клл:- охвачен отрицательной обратной связью, то его входы эквипотенциальны. Следовательно, при нулевом входном токе ОУІ и полевых транзисторах в качестве Коп; потенциал Увх; независимо от всличины isri равен потенциалу 94 на неинвертирующем входе ОУІ. Стабилизация Ува: при этом происходит изменением потенциала неинвертирующего входа ОУ2 интегратора на величину isri. Zrai. Очевидно, что в интегрирующем преобразователе с таким ВК для определения момента равенства нулю напряжения на емкости интегратора /7/ ВХОДЫ нуль-органа должны подключаться параллельно этой емкости. 👘 Ключ в схеме рис. 5 выполняет те же функции, что и в схеме рис. І. KA

ВК с реальными ОУ не равен потенциалу Ун . Пусть Ун =0, тогда так же, как для КНПД можно показать, что при isr = 0 % =

= CODUS + COKBi ,

где $e_{oorg} = \frac{e_{cM_2}}{1 + K_1} + e_{cM_1} \frac{K_1}{1 + K_1}$ ЭДС, создаваемая общими для всех ка-налов узлами ВК и устраняемая авто-коррекцией;

 e_{cM1} , e_{cM2} - ЭДС смещения ОУІ и ОУ2; K_1 - коэффициент усиления ОУІ на постоян-ном токе; $e_{g\kappa\delta i} = \frac{e_{\kappa \partial i}}{1+K_1} + J_{\delta x_1} Z_{\kappa nni} \frac{K_1}{1+K_1}$ эквивалентная остаточная ЭДС КЭ; J8x1 - входной ток ОУІ.

Для МОП-транзистора $\mathcal{C}_{K9} \approx \mathcal{O}$, тогда при $\mathcal{J}_{\mathcal{B}_{K1}} = 0$ равно нулю Cars BK. И

При определении операторного входного сопротивления БК учтем, что в области малых времен напряжение на конденсаторе интегратора практически равно нулю, и инвертирующий вход ОУ2 можно ссединить с его выходом. Тогда эквивалентная схема ВК может быть представлена в виде, показанном на рис. 6, где Rs, - выходное сопротивление ОУ2; У2 (р) - изображение потенциала на неинтертирующем входе ОУ2; $E_1(p)$ и $E_2(p)$ – изображения ЭДС внутренних зависимых источников ОУТ и ОУ2.

Для этой схемы можно записать

$$\begin{bmatrix} \mathcal{G}_{\mathcal{B}_{X}}(\rho) = \mathcal{J}_{\mathcal{B}_{X}}(\rho)(\mathcal{Z}_{K3i} + \mathcal{R}_{\mathcal{B}_{2}}) + \mathcal{E}_{1}(\rho) + \mathcal{E}_{2}(\rho) \\ \mathcal{G}_{2}(\rho) = \mathcal{J}_{\mathcal{B}_{X}}(\rho)\mathcal{R}_{\mathcal{B}_{2}} + \mathcal{E}_{1}(\rho) + \mathcal{E}_{2}(\rho) , \qquad (4)$$

где $E_1(p) = \mathcal{G}_{\mathcal{B}_{\mathcal{X}}}(p) K_1(p);$ $E_2(p) = [\mathcal{G}_2(p) - \mathcal{G}_{\mathcal{B}_{\mathcal{X}}}(p) K_1(p)] K_2(p);$ $K_1(p) = -K_1/(1+pT_{OY_1}); K_2(p) =$ $= -K_2/(1+pT_{OY_2}).$ Подставив в систему (4) $E_1(p);$

Подставив в систему (4) $E_1(p)$, $E_2(p)$ и $\mathcal{I}_{\mathcal{B}_X}(p) = 1/p$ после несложных преобразований получим выражение операторного входного сопротивления ВК с АКОП:

Рис. 6. Эквивалентная схема ВК для определения Z_{BX} (р)

при t=0 $Z_{BXi}(t=0)=tim Z_{BXi}(p)=Z_{K3i}+R_{B2}$. В установившемся режиме (при $t=\infty$)

$$Z_{\mathcal{B}_{X_{i}}}(t=\infty) = \ell i \pi p Z_{\mathcal{B}_{X_{i}}}(p) = \frac{Z_{K_{2}i}}{1+K_{1}} + \frac{K_{\mathcal{B}_{2}}}{(1+K_{1})(1+K_{2})}$$

Для того, чтобы в интегрилующем преобразователе с токовым входом (ТВ) /IO/ выходной ток ОУ2 не превышал допустимого, между выходом ОУ2 и выходом интегратора включается буферный усилитель. При этом $R_{b_2} << Z_{K_{3i}}$, и, пренебрегая в числителе (5) слагаемым, содержащим R_{b_2} , получаем выражение, аналогичное (3). В этом случае схема замещения КЭ ВК приобретает вид, показанный на рис. 4, где $R_1 = Z_{K_{3i}}$, $R_2 = Z_{K_{3i}}/K_1$, $L_{3K_{3i}} = Z_{K_{3i}}/K_1$.

Оригинал выражения (5) соответствует зависимости 98 (t) при подаче на вход ВК единичного скачка тока:

$$\begin{aligned} \mathcal{Y}_{\mathcal{B}_{X}}(t) &= \frac{\mathcal{Z}_{K9i}}{1+K_{1}} \left(1+K_{1}e^{-\frac{1+K_{1}}{\mathcal{T}_{Oy_{1}}}t}\right) + \frac{\mathcal{R}_{\mathcal{B}_{2}}}{(1+K_{1})(1+K_{2})} \left\{1+\right. \\ &+ \frac{K_{1}(1+K_{2})[\mathcal{T}_{Oy_{1}}-\mathcal{T}_{Oy_{2}}(1+K_{1})]}{\mathcal{T}_{Oy_{1}}(1+K_{2})-\mathcal{T}_{Oy_{2}}(1+K_{1})} e^{-\frac{1+K_{1}}{\mathcal{T}_{Oy_{1}}}t} + \frac{K_{2}(1+K_{1})[\mathcal{T}_{Oy_{1}}(1+K_{2})-\mathcal{T}_{Oy_{2}}]}{\mathcal{T}_{Oy_{2}}(1+K_{1})} e^{-\frac{1+K_{2}}{\mathcal{T}_{Oy_{2}}}t} \left\{.\right] \end{aligned}$$

Зависимости $\mathcal{G}_{SX}(t)$ для \mathcal{Z}_{K9} = IOO Ом и двух значений \mathcal{R}_{S_2} приведены на рис. 7. Параметры усилителей, использованные в расчете: ОУІ - КІ5ЗУД2; KI = IOOOO; \mathcal{T}_{OY_1} = 6,4 мс; ОУ2 - К544УДІА;

Рис. 7. Изменение потенциала на входе ВК при единичном скачке тока

 $K_2 = 50000; T_0 y_2 = 15,9$ мс; R_{B_2} без буферного усилителя равно 100 Ом, с буферным усилителем равно I Ом.

При указанных значениях параметров и $R_{\mathcal{B}_2} = 0$ величина $L_{\mathcal{D}\mathcal{K}\mathcal{B}}$ в эквивалентной схоме КЭ БК (см. рис. 4) составляет 64 мкГ, что в основном обусловлено большой величиной остаточного сопротивления используемых в БК МОП-транзисторов.

При наличии буферного усилителя в интеграторе и схемы автоматической коррекции \mathcal{C}_{CM} усилителей КНПД и ВК эквивалентная схема ИЦ интегрирующего преобразователя с ТВ /IO/ с дифференциальным индуктивным датчиком может быть представлена в виде, псказанном на рис. 8.

Результаты оценки уменьшения чувствительности преобразователя при введении в ИЦ параметров КЭ для различных схем коммутации приведены в табл. I, где $\alpha = t_{12}/\tau_0$ – отношение времени единичного интегрирования t_{12} /IO/ к постоянной времени датчика $\tau_0 = L_0/z_0$. Для схемы рис. 8 результаты получены методом уравнений состояния с последующим численным интегрированием, для схемы без АКОП ($R_2 = \infty$, $R_{12} = \infty$) и для гипотетического случая – схемы коммутации с безынерционными ОУ ($\tau_{04} = 0, L_{9K} = 0$) – с использованием аналитических выракений, полученных в работе /IO/. В расчетах использованы приведенные выше значения параметров КЭ и ОУ.

В отличие от схем коммутации резисторных датчиков, где введе-

Рис. 8. Эквивалентная схема измерительной цепи интегрирующего преобразователя с индуктивным датчиком нием задержки интегрирования /9/ удается прак-ТИЧЕСКИ ПОЛНОСТЬЮ ИСКЛЮчить влияние ОП КЭ. R. схеме коммутации ИНДУК-ТИЕНЫХ ДАТЧИКОВ эффективность активной KOMпенсации значительно ниже. Так. в соответствии с таблицей, для ИЦ с датчиком ИЛ-І влияние КЭ при 🗠 = 0.2 уменьшается за счет активной компенсации не в 2985 раз. а вследствие инерционности ОУ всего лишь в 7.15 раз. В ИЦ с датчиком ИД-8 для этого же значения о имеем уменьшение влияния

КЭ не в 7410 раз, а всего лишь в 167,4 раза.В отличие от схемы без активной компенсации в схеме с АКОП влияние ключевых элементов максимально при малых значениях \propto и несколько уменьшается с его увеличением. Очевидно, что аналогично (при меньших абсолютных значениях) зависит от \propto и мультипликативная погрешность преобразователя, обусловленная температурным изменением $Z_{X,2}$.

На основании проведенного анализа можно сделать следующие выводы. В преобразователях на основе МТПП основным параметром схем замещения КЭ коммутаторов с АКОП является эквивалентная индуктивность, отражающая инерционность применяемого в коммутаторе операционного усилителя. Имея в зависимости от типов используемых КЭ и ОУ величину от единиц до десятков мкГ, она может существенно уменьшать эффективность активной компенсации и должна учитываться при оценке влияния КЭ

152

x	Уменьшение чувствительности в % в преобразователе			Датчик и
	бөз АКОП	с АКОП	с АКОП и <i>Тоу</i> = 0	его параметры
0,1	58,5	10,52	0,012	ИД-І
0,2	75,6	10,50	0,025	$L_0 = I M \Gamma$
0,5	89,5	9,83	0,056	Za = 6 0M
I,0	94,6	8,40	0,106	
0,1	8,6	0,097	0,0012	ИД-8
0,2	15,9	0,095	0,0021	$L_0 = 0, 13 \Gamma$
0,5	32,7	0,088	0,0042	$z_0 = 750 \text{M}$
I,0	49,3	0,077	0,0079	

Влияние КЭ на чувствительность преобразователей

Библиографический список

I. Пат. 1264421 Великобритания, МКИ НОЗк 17/02. *Pzecision* switching cizcuit/P.C. Michael (Великобритания). Заявлено 02.01.69; Опубл. 23.02.72; НКИ НЗТ. - 3 с.

2. Пат. 2148774 Франция, МКИ НОЗК 17/00. *Pezfection-nements* aux dispositifs de commutation/M. Journazd, M. Tissot, A. Yzumback (Франция). Заявлено 03.08.71; Опубл. 23.03.73. – 9с.

3. А.с. 480190 СССР, МКИ НОЗк 17/60. Коммутирующее устройство /Б.П.Подборонов,Е.М.Кольман, А.В.Фурман, В.В.Шевчук. Заявлено 17.09.73; Опубл. 05.08.75. Бюл. № 29.

4. Кройцер М. Измерительная система с высокоточным многоканальным переключающим устройством на МДП-транзисторах //Экспрессинформация ВИНИТИ. Сер. Испытательные приборы и стенды. - 1977. -№ 37. - С. 31-41.

5. Вилоп Л.Э., Тимофеев С.А. Бесконтактные коммутаторы с активной компенсацией остаточных параметров ключевых элементов//Автоматизация научных исследований морей и океанов: Тез.докл. 5-й Всесоюзной школы. - Севастополь, 1980. - С. 185-186.

6. Агейкин Д.И., Скобелев О.П., Костина Е.Н. Методы преобразования на основе тестовых переходных процессов //Измерения, контроль, автоматизация. - М.: ЦНИИТЭИприборостроение, 1978. - № 4(16). - С. 54-62. 7. Вилоп Л.Э. Анализ измерительной схемы с двухтактным интегрированием для индуктивных первичных преобразователей //Автоматизация экспериментальных исследований: Межвуз. сб. – Куйбышев, 1976, - С. 108-113.

8. А.с. 849486 СССР, МКИ НОЗк 17/00. Коммутатор /Л.Э.Вилоп, О.П.Скобелов. Заявлено 02.10.79; Опубл. 23.07.81. Бюл. № 27.

9. А.С. II62028 СССР, МКИ НО3к I7/00. Коммутатор /Л.Э.Вилоп, О.П.Скобелев. Заявлено 07.I2.83; Опубл. I5.06.85. Бюл. № 22.

IO. Вилоп Л.Э. Влияние входного сопротивления интегратора на характеристики интегрирующего преобразователя //Автоматизация научных исследований: Межвуз. сб. – Куйбышев: КуАИ, 1984. – С. 109-116.

УДК 621.317

Ю.Н.Секисов, А.А.Хритин

ИССЛЕДОВАНИЕ ПРЕДЕЛЬНЫХ ВОЗМОЖНОСТЕЙ МЕТОДА ПЕРВОЙ ПРОИЗВОДНОЙ ДЛЯ ПРЕОБРАЗОВАНИЯ ПАРАМЕТРОВ ВЫСОКОТЕМПЕРАТУРНЫХ ВИХРЕТОКОВЫХ ДАТЧИКОВ

(г. Куйбышев)

Стремление уменьшить габариты и вес индуктивного датчика и исключить из его электромагнитной системы ферромагнитные материалы ведет к существенному снижению величины индуктивности датчика. К 00новному фактору, ограничивающему минимальное значение индуктивности. следует отнести снижение точности преобразования за счет возрастаю щего влияния неинформативных и паразитных параметров измерительной цепи (ИЦ) преобразователя и параметров датчика в электрический сигнал.Кроме того, при использовании импульсных методов преобразования параметров датчика в электрический сигнал возникают трудности практической реализации ИЦ с малым значением индуктивности датчика И. следовательно, малым временем преобразования.

В статье представлены результаты анализа ИЦ, реализующей метод первой производной (МПП) /I/, с датчиками, индуктивность которых снижена до значений IO...20 мкГн. ИЦ содержит дифференциальный датчик, входное сопротивление блока, выполняющего операцию дифференци – рования тока катушек датчика, линию связи "датчик – блок дифференци-