РАЗДЕЛ II ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ И ПРИБОРЫ

А. И. МАРТЯШИН, В. М. ШЛЯНДИН, А. Е. МОРОЗОВ

ОБ ИСПОЛЬЗОВАНИИ ПЕРЕХОДНЫХ ПРОЦЕССОВ ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

При производстве современного электротехнического и радиоэлектронного оборудования одной из самых трудоемких операций является контроль исправности электрических цепей (контроль правильности монтажа). Поэтому автоматизация подобных операций целесообразна практически при любом типе производства. Ниже на примере параллельной $R_{\rm K}$ $C_{\rm K}$ цепи рассматривается возможность использования параметров электрических цепей, характеристик переходных процессов, возникающих в специальных измерительных схемах, куда включена и коптролируемая цепь. Чаще всего в качестве измерительной схемы используется обычный делитель напряжения, составленный из последовательного соединения образцового элемента и контролируемой цепи; в рассматриваемом случае (контроль параллельной $R_k C_k$ цепи) за образцовый элемент взят резистор R_0 (рис. 1). При подключении такой схемы к источнику образцового напряжения (ИОН) с напряжением U_{π} в ней возникает переходный процесс, причем напряжение $U_{\mathbb R}$ на контролируемой цепи будет изменяться [1] по следующему закону:

Рис. 1. Измерительная схема электрической цепи

та включения U_Π до момента

равенства $U_{\rm K}$ и $U_{\rm O\Pi}$ выделяется по команде блока сравнения (БС) триггером ${\rm Tr}$), определится как

$$t_{\tau} = -C_{K} \cdot \frac{R_{K} \cdot R_{O}}{R_{O} + R_{K}} \cdot \ln \left[1 - \frac{U_{O\Pi}}{U_{\Pi}} \cdot \frac{R_{O} + R_{K}}{R_{K}} \right]$$
 (2)

Учитывая, что $R_{\rm K}=R_{\rm KH}\pm R_{\rm K}$ ($\Delta R_{\rm K}$ — отклонение сопротивления $R_{\rm K}$ от своего номинального значения $R_{\rm KH}$), из выражения (2) получим

$$t_{\tau} = -C_{K} Ro \frac{R_{KH} \pm \Delta R_{K}}{R_{O} + R_{KH} \pm \Delta R_{K}} \cdot \ln \left[1 - \frac{U_{O\Pi}}{U_{\Pi}} \cdot \frac{R_{O} + R_{KH} \pm \Delta R_{K}}{R_{KH} \pm \Delta R_{K}} \right]. (3)$$

Обозначив $\pm \frac{\Delta R_{\rm K}}{R_{\rm KH}} = \pm m_R$, $\frac{R_{\rm O}}{R_{\rm KH}} = a_R$, после несложных преобразований из (3) получим

$$t_{z} = -C_{K} R_{O} \frac{1 \pm m_{R}}{1 + a_{R} \pm m_{R}} \cdot \ln \left[1 - \frac{U_{O\Pi}}{U_{\Pi}} \frac{1 + a_{R} \pm m_{R}}{1 \pm m_{R}} \right] = C_{K} R_{O} A_{R}.$$
(4)

Учитывая, что на каждой позиции контроля $R_0={\rm const},\ R_{\rm KH}=$ = const, $a_R={\rm const},\ \frac{U_{\rm OH}}{U_{\rm H}}={\rm const},\$ можно считать, что интервал времени t_τ определяется величинами $C_{\rm K}$ и $\pm m_R$ (при $m_R=0$ интервал времени t_τ равен постоянной времени измерительной цепи $\tau_u=R_0\cdot C_{\rm K}$ $\frac{R_{\rm KH}}{R_0+R_{\rm KH}}$).

В установившемся режиме $(t \approx \infty)$, как следует из выражения (1), напряжение $U_{\rm Ky}$ определяется только величиной $\pm m_R(a_R,\ R_0,\ U_\Pi$ — величины постоянные)

$$V_{\rm Ky} = U_{\rm II} \frac{R_{\rm K}}{R_{\rm O} + R_{\rm K}} = U_{\rm II} \frac{1 \pm m_{\rm R}}{1 + a_{\rm R} \pm m_{\rm R}} \,.$$
 (5)

По допусковой оценке этого напряжения можно однозначно судить о том, находится ли величина контролируемого сопротивления в пределах допуска или вышла за них. При этом желательно так выбрать величины a_R и $\frac{U_{\rm OII}}{U_{\rm II}}$, чтобы интервал времени t_{τ} определялся только величиной $C_{\rm K}$. Расчеты показывают, что при изменении $R_{\rm K}$ в пределах наиболее распространенных допусков $\pm 10~\%$ и $\pm 20~\%$ это возможно с приближением до десятых долей процента, для чего достаточно подобрать допустимый диапазон изменения коэффициента A_R .

В тех случаях, когда необходимо проконтролировать постоянную времени $\tau_{\rm K}$ рассматриваемой электрической цепи для получения большей точности преобразования, желательно использовать переходный процесс разряда емкости $C_{\rm K}$, возникающий при отключении источника $U_{\rm \, II}$ от измерительной цепи.

$$\begin{split} U_{\mathrm{K}} &= U_{\mathrm{\Pi}} - \frac{R_{\mathrm{K}}}{R_{\mathrm{O}} + R_{\mathrm{K}}} \cdot e^{-\frac{R_{\mathrm{O}} \cdot R_{\mathrm{K}}}{R_{\mathrm{O}} \cdot R_{\mathrm{K}} \cdot C_{\mathrm{K}}} \cdot t} \,_{\mathrm{M}} \\ t_{\mathrm{\tau}} &= -C_{\mathrm{K}} \, R_{\mathrm{K}} \cdot \frac{R_{\mathrm{O}}}{R_{\mathrm{O}} + R_{\mathrm{K}}} \cdot \ln \left[\frac{U_{\mathrm{OH}}}{U_{\mathrm{\Pi}}} \cdot \frac{R_{\mathrm{O}} + R_{\mathrm{K}}}{R_{\mathrm{K}}} \right] = \\ &= -C_{\mathrm{K}} \, R_{\mathrm{K}} - \frac{a_{R}}{1 + a_{R} \pm m_{R}} \cdot \ln \left[\frac{U_{\mathrm{OH}}}{U_{\mathrm{\Pi}}} \cdot \frac{1 + a_{R} \pm m_{R}}{1 \pm m_{R}} \right]. \end{split}$$

Рассматривая получение интервала времени t_{τ} мы предполагали идеальные условия. Фактически же необходимо учитывать нестабильность порога чувствительности БС и влияние его входного сопротивления на результат преобразования параметров контролируемой цепи в интервал времени, а также нестабильность ИОН и влияние параметров соединительных жгутов.

При получении интервала времени t_{τ} абсолютная погрешность от нестабильности $\pm \Delta V_{\Pi C}$ порога чувствительности БС определится как $\Delta t_{\tau} = t_{\tau} - t_{\tau_{\Delta V}}$, а относительная $\delta t_{\Delta V} = \frac{\Delta t_{\tau}}{t_{\tau}}$ с учетом (4) как

$$\delta t_{\Delta V} = 1 - \frac{\ln\left[1 - \frac{U_{\text{OII}} \pm \Delta U_{\text{IIC}}}{U_{\text{II}}} \cdot \frac{1 + a_R \pm m_R}{1 \pm m_R}\right]}{\ln\left[1 - \frac{U_{\text{OII}}}{U_{\text{II}}} \cdot \frac{1 + a_R \pm m_R}{1 \pm m_R}\right]}.$$
 (6)

Входное сопротивление БС $R_{\rm BX}$ фактически изменяет величину $R_{\rm K}$, уменьшая ее ($R_{\rm BX}$ подключено параллельно $R_{\rm K}$), поэтому вместо t_{τ} будет получен интервал времени

$$t_{\tau}^{1} = -C_{K} R_{O} \frac{R_{\vartheta}}{R_{O} + R_{\vartheta}} \cdot \ln \left(1 - \frac{U_{O\Pi}}{U_{\Pi}} \cdot \frac{R_{O} + R_{\vartheta}}{R_{\vartheta}} \right),$$

где
$$R_{\vartheta} = \frac{R_{\mathsf{K}} \cdot R_{\mathsf{BX}}}{R_{\mathsf{K}} + R_{\mathsf{BX}}}$$

Можно показать, что относительная погрешность $\delta t \tau_R$ получения интервала времени t_{τ} , обусловленная влиянием $R_{\rm BX}$, определяется выражением

$$\delta t_{\tau_R} = 1 - \frac{R_{\Im}}{R_{\rm K}} \cdot \frac{R_{\rm O} + R_{\rm K}}{R_{\rm O} + R_{\Im}} \cdot \frac{\ln \left[1 - \frac{U_{\rm OII}}{U_{\rm II}} \cdot \frac{R_{\rm O} + R_{\Im}}{R_{\Im}} \right]}{\ln \left[1 - \frac{U_{\rm OII}}{U_{\rm II}} \cdot \frac{R_{\rm O} + R_{\rm K}}{R_{\rm K}} \right]}, \quad (7)$$

а относительная погрешность δt_Π получения интервала времени $t^{\tau_{-}}$ обусловленная нестабильностью $\pm \Delta U_{\Pi}$ напряжения ИОН, —

$$\delta t_{\Pi} = 1 - \frac{\ln\left[1 - \frac{U_{\text{OH}}}{U_{\Pi} \pm \Delta U_{\Pi}} \cdot \frac{1 + a_{R} \pm m_{R}}{1 \pm m_{R}}\right]}{\ln\left[1 - \frac{U_{\text{OH}}}{U_{\Pi}} \cdot \frac{1 + a_{R} \pm m_{R}}{1 \pm m_{R}}\right]}$$
(8)

Учитывая, что емкость соединительных жгутов Сж подключается параллельно контролируемой цепи, относительная погрешность получения интервала времени t_z , обусловленная влиянием этой емкости, определится следующим образом:

$$\delta t_{C_{\mathcal{H}}} = \frac{R_{O} (C_{K} + C_{\mathcal{H}}) \frac{R_{K}}{R_{O} + R_{K}}}{R_{O} C_{K} \frac{R_{K}}{R_{O} + R_{K}}} - 1 = \frac{C_{\mathcal{H}}}{C_{K}}.$$

Очевидно, что параметры и других часто встречающихся цепей (последовательное соединение $R_{\mathbf{K}}$ и $C_{\mathbf{K}}$, последовательное и параллельное соединение $R_{\rm K}$ и катушки индуктивности $L_{\rm K}$) можно проконтролировать по вышеописанной методике.

При практической реализации такого устройства контроля целесообразно с точки зрения его упрощения преобразовывать в интервал времени t_{U} установившееся значение напряжения $U_{
m Ky}$, а затем последовательно производить допусковую оценку интервалов времени t_{τ} и t_{U} .

ЛИТЕРАТУРА

1. Теумин И. И. Справочник по переходным электрическим процессам. Изд. «Связь», 1952.

А. А. БОЛТЯНСКИЙ, М. Г. ТОЛСТОНОГОВА, А. А. КОНДОРОВ

ИНТЕГРИРУЮЩИЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ С КОЛЬЦЕВЫМ ДИОДНЫМ КОММУТАТОРОМ

Схемы кольцевого детектора, обладая относительным постоянством входного сопротивления, отсутствием подмагничивания в трансформаторах, хорошей термостабильностью, нашли широкое применение в измерительных преобразователях в качестве структурных элементов таких устройств, как двухполюсный переключатель, амплитудный модулятор, амплитудно-фазовый 3 - 5431

65