МЕТОД ВЫЧИСЛЕНИЯ ИНТЕГРАЛЬНЫХ КВАДРАТИЧЕСКИХ ОЦЕНОК ПЕРЕХОДНЫХ ПРОЦЕССОВ НА ОСНОВЕ ПОНЯТИЯ ОБОБЩЕННОГО СПЕКТРА

Элементы обобщенного спектра определяются как коэффициенты ортогонального разложения переходного процесса. В работе показано; что интегральные квадратические оценки могут быть вычислены с помощью элементов обобщенного спектра. Метод удобен для реализации на ЦВМ.

При анализе неустановившегося движения систем автоматического управления широкое применение находят интегральные квадратические оценки

$$I_{V} = \int_{0}^{\infty} V(t) dt, \qquad (1)$$

где V(t) — квадратичная форма, в общем случае имеющая следующий вид

$$V(t) = z^{2}(t) + \gamma^{1} z^{2}(t) + \gamma^{2} z^{2}(t) + \dots + \gamma^{n} (z^{(n)})^{2}(t).$$
 (2)

где z(t) — переходная составляющая ошибки, равная

$$z(t) = h(\infty) - h(t).$$

Вычисление I_V встречает значительные трудности, особенно если $z^{(n)}(t)$ имеет порядок больше двух.

Причем эти трудности не снимаются даже при использовании вычислительной техники, так как существующие в настоящее время методы плохо поддаются алгоритмизации.

В данной работе предлагается приближенный метод расчета интегральных квадратических оценок свободный от вышеуказанных недостатков. Метод основан на применении аппарата обобщенных спектральных характеристик.

Рассмотрим применение функций Лягерра $L_i(t)$ для решения вышеуказанной задачи.

Выражение для переходной ошибки можно получить в виде:

$$z(t) = \sum_{k=1}^{m} c_k^0 L_k(t).$$
 (3)

Заметим, что ортогональная спектральная характеристика (ОСХ) $\{c_i^0\}$ может быть вычислена через моменты переходной составляющей z(t), которые, в свою очередь, рассчитываются по передаточной функции $\{1\}$.

Дифференцируя равенство (3), получим аналитическую зависимость для $\overline{z}(t)$:

$$z(t) = \sum_{k=1}^{m} c'_{k} L_{k}(t),$$
 (4)

где коэффициенты $\{c_k'\}$ вычисляются через коэффициенты $\{c_k^0\}$ с помощью элементарных равенств [1]

 $c_m' = \frac{1}{2} c_m^0 .$

Используя равенства (5), получим формулу для $\dot{z(t)}$ в виде:

$$\dot{z}(t) = \sum_{k=1}^{m} c_k^2 L_k(t).$$
 (6)

Аналогичным образом можно получить разложение для любой производной:

$$z^{(n)}(t) = \sum_{k=1}^{n} c_k^n L_k(t).$$
 (7)

Таким образом, спектр Лягерра исследуемой динамической характеристики переходной ошибки определяет поведение не только самой характеристики, но и всех ее производных с требуемой степенью точности.

Используя записанные выше формулы, выражение для I_{V} принимает вид:

$$I_{V} = \int_{0}^{\infty} \left\{ \left[\sum_{k=1}^{m} c_{k}^{0} L_{k}(t) \right]^{2} + \gamma^{1} \left[\sum_{k=1}^{m} c_{k}^{1} L_{k}(t) \right]^{2} + \gamma^{2} \left[\sum_{k=1}^{m} c_{k}^{2} L_{k}(t) \right]^{2} + \cdots \right\}$$

$$\cdots + \gamma^{n} \left[\sum_{k=1}^{m} c_{k}^{n} L_{k}(t) \right]^{2} dt = k \left[\sum_{k=1}^{m} (c_{k}^{0})^{2} + \gamma^{1} \sum_{k=1}^{m} (c_{k}^{1})^{2} + \gamma^{2} \sum_{k=1}^{m} (c_{k}^{2})^{2} + \cdots + \gamma^{n} \sum_{k=1}^{m} (c_{k}^{n})^{2} \right] = k \sum_{k=1}^{n} \gamma^{g} \sum_{k=1}^{m} (c_{k}^{g})^{2}.$$
(8)

При выводе этих формул использовалось свойство ортогональности и нормированности функций Лягерра с единичным весом.

Таким образом, формула

$$I_V = k \sum_{g=0}^{n} \gamma^g \sum_{k=1}^{m} (c_k^g)^2$$

дает решение поставленной задачи.

В качестве ортогонального базиса могут использоваться ортогональные экспоненциальные функции, определяемые формулами:

$$\varphi_{1}(t) = \sqrt{2} e^{-t},
\varphi_{2}(t) = \sqrt{4} \left[-2e^{-t} + 3e^{-2t} \right],
\varphi_{3}(t) = \sqrt{6} \left[3e^{-t} - 12e^{-2t} + 10e^{-3t} \right],
\varphi_{4}(t) = \sqrt{8} \left[-4e^{-t} + 30e^{-2t} - 60e^{-3t} + 35e^{-4t} \right],
\varphi_{5}(t) = \sqrt{10} \left[5e^{-t} - 60e^{-2t} + 210e^{-3t} + 280e^{-4t} + 126e^{-5t} \right],
\varphi_{6}(t) = \sqrt{12} \left[-6e^{-t} + 105e^{-2t} - 560e^{-3t} + 1260e^{-4t} - 1260e^{-5t} + 462e^{-6t} \right],
\varphi_{7}(t) = \sqrt{14} \left[7e^{-t} - 168e^{-2t} + 1260e^{-3t} - 4200e^{-4t} + 6930e^{-5t} - 5544e^{-6t} + 1716e^{-7t} \right].$$

Эти функции обладают следующим свойством:

$$\int_{0}^{\infty} \varphi_{n}(t) \varphi_{m}(t) dt = \begin{cases} 0, & m \neq n; \\ 1, & m = n. \end{cases}$$

Элементы ортогонального спектра, соответствующего ортогонализированным экспоненциальным функциям [1] определяются по формулам:

$$c_{1} = \int_{0}^{1} z(t) \, \varphi_{1}(t) \, dt = \sqrt{2} \, \mu_{1},$$

$$c_{2} = \sqrt{4} \, (-2\mu_{1} + 3\mu_{2}),$$

$$c_{3} = \sqrt{6} \, (3\mu_{1} - 12\mu_{2} + 10\mu_{3}),$$

$$c_{4} = \sqrt{8} \, (-4\mu_{1} + 30\mu_{2} - 60\mu_{3} + 35\mu_{4}),$$

$$c_{5} = \sqrt{10} \, (5\mu_{1} - 60\mu_{2} + 210\mu_{3} - 280\mu_{4} + 126\mu_{5}),$$

$$c_{6} = \sqrt{12} \, (-6\mu_{1} + 105\mu_{2} - 560\mu_{3} + 1260\mu_{4} - 1260\mu_{5} + 462\mu_{6}),$$

$$c_{7} = \sqrt{14} \, (7\mu_{1} - 168\mu_{2} + 1260\mu_{3} - 4200\mu_{4} + 6930\mu_{5} - 5544\mu_{6} + 1716\mu_{7}),$$

$$\mu_k = \int_0^\infty z(t) e^{-kt} dt, \quad k = 1, 2, ...$$

Таким образом, используя формулы (10), можно найти ортогональный спектр сигнала z(t).

Ортогональный спектр сигнала z(t) находится также по формулам (10), однако моменты $\{\mu_k'\}$ определенным образом связаны с моментами $\{\mu_k\}$, а именно:

$$p_{k}' = k\mu_{k}$$
.

Действительно, пусть операторное изображение переходной ошибки имеет вид:

$$Z(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}.$$

Моменты $\mu_k (k=1,2,...)$ определяются по формуле:

$$|\mu_k = Z_{(s)}|_{s=k} = \frac{b_m k^m + b_{m-1} k^{m-1} + \dots + b_1 k + b_0}{a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0}.$$

Изображение по Лапласу для $\dot{x}(t)$ имеет вид:

$$z(t) = sZ(s) = s \frac{b_m k^m + b_{m-1} k^{m-1} + \dots + b_1 k + b_0}{a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0}$$

Откуда видно, что

$$\mu_k' = sZ(s) \mid_{s=k} = k\mu_k.$$

Аналогично:

$$\mu_k^2 = k^2 \mu_k, \dots, \mu_k^g = k \mu_k.$$

Таким образом окончательно запишем связь моментов процесса с моментами производной от z(t):

$$\mu_k^n = \int_0^\infty z^{(n)}(t) e^{-kt} dt = k^n \mu_k,$$

$$k = 1, 2, ...$$
(11)

Итак, при вычислении ортогонального спектра процесс z(t) и его производных сначала необходимо вычислить необходимое число моментов (обычно 7—8) функции z(t), а затем, используя формулу (11), можно вычислить все моменты любого количества производных функций z(t).

Затем, применив формулы (10), легко находится обобщенный

спектр процесса z(t) и всех его производных.

Таким образом, используя изложенную выше методику, находим:

$$z(t) = \sum_{i=1}^{m} c_i^0 \varphi_i(t),$$

$$z(t) = \sum_{i=1}^{m} c_i^1 \varphi_i(t),$$

$$\vdots$$

$$z^{(n)}(t) = \sum_{i=1}^{m} c_i^n \varphi_i(t).$$
(12)

Подставляя выражение (12) в формулу (1) имеем:

$$I_{V} = \int_{0}^{\infty} \left\{ \left[\sum_{i=1}^{m} c_{i}^{0} \varphi_{i}(t) \right]^{2} + \gamma^{1} \left[\sum_{i=1}^{m} c_{i}^{1} \varphi_{i}(t) \right]^{2} + \gamma^{2} \left[\sum_{i=1}^{m} c_{i}^{2} \varphi_{i}(t) \right]^{2} + \cdots \right.$$

$$\cdots + \gamma^{n} \left[\sum_{i=1}^{m} c_{i}^{n} \varphi_{i}(t) \right]^{2} dt = \sum_{i=1}^{m} (c_{i}^{0})^{2} + \gamma^{1} \sum_{i=1}^{m} (c_{i}^{1})^{2} + \gamma^{2} \sum_{i=1}^{m} (c_{i}^{2})^{2} + \cdots \right.$$

$$\cdots + \gamma^{n} \sum_{i=1}^{m} (c_{i}^{n})^{2} = \sum_{g=0}^{n} \gamma^{g} \sum_{i=1}^{m} (c_{i}^{g})^{2}. \tag{13}$$

Итак, если в качестве ортогонального базиса используются ортогональные функции вида (9), выражение для интегральной квадратической оценки имеет вид:

$$I_{V} = \sum_{g=0}^{n} \gamma^{g} \sum_{i=1}^{n} (c_{i}^{g})^{2}.$$

Легко видеть, что приближенный метод вычисления интегральной квадратической оценки на основе понятия обобщенного спектра процесса значительно проще существующих методов и позволяет анализировать систему при больших значениях *g*, расчеты же при этом усложняются незначительно.

Аналогичные алгоритмы можно получить, если для вычисления интегральных квадратических оценок использовать другие ортого-

нальные системы функций.

Полученные в работе алгоритмы хорошо приспособлены для реализации на ЦВМ. Так, например, для получения заведомо хорошей точности вычислений необходимо увеличить число членов разложения. Это ни в какой мере не приводит к изменениям в программе, так как для каждой ортогональной системы существуют соответствующие рекурентные соотношения для нахождения необходимого количества членов ортогональной системы.

ЛИТЕРАТУРА

1. В. В. Солодовников, А. Н. Дмитриев, Н. Д. Егупов. Ортогональный метод апализа и синтеза линейных систем автоматического управления на основе понятия моментов. Сб. «Автоматическое управление и вычислительная техника», вып. 8, Машиностроение, 1968.