Б. Я. ЛИХТЦИНДЕР, С. М. ШИРОКОВ, В. Г. ГУСЕВ

К АНАЛИЗУ МНОГООБМОТОЧНЫХ ИЗМЕРИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ С ФЕРРОМАГНИТНЫМ СЕРДЕЧ-НИКОМ

Многообмоточные трансформаторы получили широкое распространение в измерительной технике в качестве элементов компейсаторов, мостов с тесной индуктивной связью плеч, индуктивных преобразователей перемещений и многих других устройств. Анализ измерительных цепей указанных устройств требует знания уравнений многообмоточных трансформаторов как многололюсников.

Но при наличии многих обмоток затрудняется учет потерь в ферромагнитном сердечнике трансформатора по методу схем замещения. Поэтому, исследуя уравнения многообмоточных измерительных трансформаторов, потерями в стали, как правило, пренебрегают [1, 2].

Между тем, потери в стали вызывают фазовые сдвиги в обмотках трансформатора и их учет имеет первостепенное значение для измерительной техники.

Еще в 1913 г. В. К. Аркадьевым [3] для анализа магнитных цепей в синусоидальных режимах было введено понятие комплексной магнитной проницаемости

$$\widetilde{\mu} = \mu_1 - j\mu_2 = \frac{\dot{B}}{\mu_0 \dot{H}}, \qquad (1)$$

где

µ₁ и µ₂ — соответственно консервативная и поглощающая магнитные проницаемости;

В и *H* — магнитная индукция и напряженность поля в сердечнике в комплексной форме;

 $\mu_0 = 4\pi \cdot 10^{-7} \frac{2H}{M}$ — магнитная постоянная.

Комплексный характер магнитной проницаемости обусловлен наличием сдвига фаз между током в обмотке и связанным с ним магнитным потоком. Вследствие этого при анализе измерительных трансформаторов целесообразно пользоваться понятиями комплексных собственных и взаимных индуктивностей [4]

$$\widetilde{L}_k = \frac{\dot{\Psi}_k}{\dot{I}_k}; \quad \widetilde{M}_{ik} = \frac{\dot{\Psi}_{ik}}{\dot{I}_k}, \quad (i, \ k = 1, \ 2, \dots, n), \tag{2}$$

где $\dot{\Psi}_k$ — потокосцепление самоиндукции k-ой обмотки;

 Ψ_{lk} — потокосцепление взаимной индукции *t*-ой и *k*-ой обмоток;
 I_k — ток в *k*-ой обмотке.

 $\begin{array}{c} w_{i}^{\prime \prime} \overline{}_{i} & U_{i} \\ \hline \\ w_{i}^{\prime \prime} \overline{}_{i} & U_{i} \\ \hline \\ w_{i}^{\prime \prime \prime} \overline{}_{i} & U_{i} \\ \hline \\ w_{n}^{\prime \prime \prime} \overline{}_{n} & U_{n} \\ \hline \\ \end{array}$

Рис. 1. Схема трансформатора с неразветвленной магнитной цепью

анализа измерительных цепей.

Чаще всего измерительные трансформаторы выполняются на тороидальных сердечниках, поэтому ограничимся рассмотрением трансформатора с неразветвленной магнитной цепью (рис. 1).

С токами, протекающими в обмотках трансформатора, связаны основной магнитный поток Φ_0 и потоки рассеяния Φ_{sa}

$$\dot{\Phi}_{0} = \widetilde{Y}_{0} \sum_{l=1}^{n} w_{l} \dot{I}_{l}; \quad \dot{\Phi}_{sq} = \widetilde{Y}_{sq} w_{q} \dot{I}_{q}; \quad (q = 1, 2, ..., n), \quad (3)$$

где $\overline{Y}_0 = g_0 - j b_0$ — комплексная магнитная проводимость сердечника для основного магнитного потока [5];

 $\overline{Y}_{sq} = g_{sq} - j b_{sq}$ — комплексная, магнитная проводимость для потока рассеяния Φ_{sq} ;

> w_i, w_q — число витков соответственно *t*-ой и *q*-ой обмоток;

п — число обмоток.

Для тороидального сердечника без зазора [5]

$$\widetilde{Y}_0 = \frac{\widetilde{\mu}\,\mu_0\,S}{l},\tag{4}$$

где S — сечение сердечника; l — длина средней силовой линии.

Проводимости путей рассеяния рассчитываются в зависимости от конфигурации сердечника; при тороидальной форме сердечника потоки рассеяния практически отсутствуют.

В специальной литературе можно найти подробные указания по расчету составляющих комплексной магнитной проницаемости или непосредственно магнитной проводимости [5].

28

Несинусоидальные величины заменяются, как это обычно принято, эквивалентными синусоидами.

Использование понятий комплексной индуктивности и взаимоиндуктивности позволяет без труда записать уравнения трансформатора с учетом потерь в стали при произвольном числе обмоток и открывает возможности для широкого применения матричных методов Как следует из соотношений (3) и (4), потокосцепление самоиндукции каждой из обмоток

$$\dot{\Psi}_{q} = (\widetilde{Y}_{0} + \widetilde{Y}_{sq}) w_{q}^{2} I_{q}, \quad (q = 1, 2, ..., n),$$
(5)

а потокосцепление взаимной индукции q-ой и i-ой обмоток

$$\Psi_{qi} = \widehat{Y}_0 w_q w_i I_i, \quad (q, \ i = 1, \ 2, \dots, \ n, \ q \neq i). \tag{6}$$

В каждой из обмоток трансформатора наводится э. д. с.:

$$\dot{E}_{q} = -j\omega\left(\dot{\Psi}_{q} + \sum_{i=1, i \neq q}^{n} \dot{\Psi}_{qi}\right) \quad (q = 1, 2, ..., n)$$
(7)

и справедливы уравнения контурных токов

$$U_q = -E_q + I_q r_q \quad (q = 1, 2, ..., n),$$
(8)

ғде U_q — напряжение на зажимах q-ой обмотки;

 z_q — активное сопротивление q-ой обмотки; или с учетом (8)

$$\dot{U}_{q} = \dot{I}_{q} r_{q} + j \omega \dot{\psi}_{q} + j \omega \sum_{i=1, i \neq q}^{n} \dot{\Psi}_{qi} \quad (q = 1, 2, ..., n).$$
(9)

Основываясь на допущении о линейности связи между магнитной индукцией и напряженностью и считая магнитные проводимости \overline{Y}_0 и \overline{Y}_{sq} приближенно постоянными, можно записать (5) и (6) с использованием комплексной индуктивности (2)

$$\Psi_q = \widetilde{L}_q \, \widetilde{I}_q, \quad \Psi_{q\,i} = \widetilde{M}_{q\,i} \widetilde{I}_i, \tag{10}$$

где

$$\widetilde{L}_q = \left(\widetilde{Y}_0 + \widetilde{Y}_{sq}\right) w_q^2 \tag{11}$$

— комплексная индуктивность q-ой обмотки;

$$\widetilde{M}_{q\,i} = \widetilde{Y}_0 \, w_q \, w_i \tag{12}$$

комплексная взаимная индуктивность q-ой и i-ой обмоток.
 Подставив (10) в (9), нетрудно получить систему уравнений многообмоточного трансформатора в матричной форме:

$$\begin{bmatrix} \dot{U}_{1} \\ \dot{U}_{2} \\ \vdots \\ \dot{U}_{n} \end{bmatrix} = \begin{bmatrix} r_{1} + j \omega \widetilde{L}_{1} & j \widetilde{\omega} \widetilde{M}_{12} & \cdots & j \omega \widetilde{M}_{1n} \\ j \omega \widetilde{M}_{21} & r_{2} + j \omega \widetilde{L}_{2} & \cdots & j \omega \widetilde{M}_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ j \omega \widetilde{M}_{n1} & j \omega \widetilde{M}_{n2} & \cdots & r_{n} + j \omega \widetilde{L}_{n} \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{1} \\ \dot{I}_{2} \\ \vdots \\ \dot{I}_{n} \end{bmatrix}$$
(13)

Таким образом, многообмоточный трансформатор с ферромагнитным сердечником можно рассматривать как пассивный многополюсник, элементы матрицы сопротивлений которого определяются равенствами:

$$z_{pp} = r_p + j \omega \overline{L}_p; \quad z_{pq} = j \omega \overline{M}_{pq}; \quad z_{pq} = z_{qp}, \quad (q \neq p). \quad (14)$$

С учетом (11) и (12) выражения (14) можно записать в виде

$$z_{pp} = r_p + j \omega w_p^2 (\overline{Y}_0 + \overline{Y}_{sq}) = r_p + \omega w_p^2 (b_0 + b_{sp}) + + j \omega w_p^2 (g_0 + g_{sp})$$
(15)
$$z_{pq} = j \omega w_p w_q \overline{Y}_0 = \omega w_p w_q b_0 + j \omega w_p w_q g_0.$$

Как следует из (15), наличие мнимой части магнитной проводимости $j(b_0+b_{\rm sp})$, отражающей потери в стали, вызывает появление дополнительной активной составляющей у собственных и взаимных сопротивлений трансформатора. В схемах замещения это учитывается путем введения сопротивления потерь в стали.

Рассмотрим, как изменятся уравнения трансформатора при питании какой-либо из его обмоток (*q*-ой обмотки) от источника э. д. с. E'_q с внутренним сопротивлением z'_q (рис. 2,*a*). В этом случае

$$\dot{U}_q = \dot{E}_q' - \dot{I}_q z_q' \tag{16}$$

и матричное уравнение (13) принимает вид

$$\begin{bmatrix} \dot{U}_{1} \\ \vdots \\ \dot{U}_{q-1} \\ E'_{q} \\ \dot{U}_{q+1} \\ \vdots \\ \dot{U}_{n} \end{bmatrix} = \begin{bmatrix} z_{11} & \dots & z_{1, q-1} & z_{1q} & z_{1, q+1} & \dots & z_{1n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ z_{q-1, 1} & \dots & z_{q-1, q-1} & z_{q-1, q} & z_{q-1, q+1} & \dots & z_{q-1, n} \\ z_{q1} & \dots & z_{q, q-1} & z_{qq} & z_{q, q+1} & \dots & z_{qn} \\ z_{q+1, 1} & \dots & z_{q+1, q-1} & z_{q+1, q} & z_{q+1, q+1} & \dots & z_{qn} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ z_{n_1} & \dots & z_{n, q-1} & z_{nq} & z_{n, q+1} & \dots & z_{nn} \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{1} \\ \vdots \\ \dot{I}_{q-1} \\ \dot{I}_{q} \\ \dot{I}_{q+1} \\ \vdots \\ \dot{I}_{n} \end{bmatrix} ,$$

$$(17)$$

где *z*_{pq} определены (14) и (15).

Исключив из (17) ток I_q , можно записать уравнения трансформатора в форме уравнений автономного многополюсника, имеющего n-1 пару зажимов:

$$\begin{bmatrix} \dot{U}_{1} \\ \vdots \\ \dot{U}_{q-1} \\ \vdots \\ \dot{U}_{q+1} \\ \vdots \\ \dot{U}_{n} \end{bmatrix} = \begin{bmatrix} z_{11}^{*} & \dots & z_{1, q-1}^{*} & z_{1, q+1} & \dots & z_{1n} \\ \vdots \\ z_{q-1, 1}^{*} & \dots & z_{q-1, q-1}^{*} & z_{q-1, q+1} & \dots & z_{q-1, n} \\ z_{q+1, 1}^{*} & \dots & z_{q+1, q-1}^{*} & z_{q+1, q+1}^{*} & \dots & z_{q-1, n} \\ \vdots \\ z_{n1}^{*} & \dots & z_{n, q-1}^{*} & z_{n, q+1} & \dots & z_{nn} \end{bmatrix} \begin{bmatrix} \dot{I}_{1} \\ \vdots \\ \dot{I}_{q-1} \\ \dot{I}_{q+1} \\ \vdots \\ \dot{I}_{n} \end{bmatrix} + \begin{bmatrix} \dot{E}_{1}^{*} \\ \vdots \\ \dot{E}_{q-1}^{*} \\ \dot{E}_{q+1}^{*} \\ \vdots \\ \dot{E}_{n}^{*} \end{bmatrix}$$
(18)

$$z_{km}^{*} = z_{km} - \frac{z_{kq} z_{qm}}{z_{qa} + z'_{q}}, \quad (k, \ m = 1, \ 2, \dots, \ n), \tag{19}$$

30

$$\dot{E}_{k}^{*} = \dot{E}_{q} \frac{z_{kq}}{z_{qq} + z_{q}^{'}},$$

$$(k = 1, 2, \dots, n).$$
(20)

Таким образом, трансформатор с источником э. д. с., подключенным к q-ой обмотке, можно рассматривать как активный автономный многополюсник, сопротивления которого определены (19), а внутренние автономные э. д. с. — (20) (рис. 2, б). $\begin{bmatrix} T_{1} & T_{1} \\ W_{1} & T_{1} \\ W_{2} & T_{2} \\ W_{2} & T_{2} \\ W_{3} & T_{4} \\ W_{5} & T_{7} \\ W_{6} & T_{7} \\ W_{6} & T_{7} \\ W_{7} & T_$

Рис. 2. Схема трансформатора и ее эквивалентная модель

Введем обозначения для остаточных параметров обмо-

ток (сопротивления меди и индуктивного сопротивления, обусловленного потоками рассеяния).

$$z_{ko} = r_k + j \omega w_k^2 \widetilde{Y}_{ks} \quad (k = 1, 2, ..., n)$$
(21)

С учетом (21) можно преобразовать (19) и (20)

$$z_{kk}^{*} = z_{ko} + (z_{qo} + z'_{q})\overline{a} \frac{w_{k}^{2}}{w_{q}^{2}}; \qquad (22)$$

$$z_{km}^* - (z_{qo} + z'_q)\overline{\alpha} \frac{w_k w_m}{w_q^2} \quad (k \neq m)$$

$$E_k^* = E_q' \frac{w_k}{w_q} \bar{\alpha}; \tag{23}$$

где
$$\overline{\alpha} = \frac{1}{1 + \frac{z_{qo} + z'_q}{f_{\odot} \overline{Y}_0 w_q^2}}$$
 (24)

Во многих случаях (в частности, при тороидальной форме сердечника) потоками рассеяния можно пренебречь и считать $z_{qo} \approx z_q$. Если при этом внутреннее сопротивление источника напряжения активно $z_q^1 = z_q^1$, то элементы матрицы сопротивлений трансформатора (22) имеют вид

$$z_{kk}^{*} = r_{k} + (r_{q} + r_{q}^{'}) \frac{w_{k}^{2} \widetilde{\varphi}}{w_{q}^{2}} \widetilde{\varphi},$$

$$z_{km}^{*} = (r_{q} + r_{q}^{'}) \frac{w_{k} w_{m}}{w_{q}^{2}} \widetilde{\alpha}; \quad (k \neq m).$$
(25)

Если сопротивление меди q-ой обмотки и внутреннее сопротивление источника напряжения пренебрежимо малы по сравнению с ее индуктивным сопротивлением, то $a \approx 1$ и, как сле-

31

дует из (25), матрица сопротивлений трансформатора вещест-

венна, а его автономные э. д. с. (23) совпадают по фазе с E_q' . Таким образом, трансформатор, одна из обмоток которого питается от источника э. д. с. и имеет значительную индуктив-

ность при малом активном сопротивлении, по отношению к остальным зажимам можно рассматривать как автономный резистивный многополюсник.

ЛИТЕРАТУРА

1. Зелях Э. В. Основы общей теории линейных электрических схем. Изд. АН СССР, 1951.

2. Карпенко В. П. Сериков И. С. Упрощенный метод расчета измерительных целей с индуктивным делителем напряжения на входе. В кн.: «Исследования электроизмерительных и магнитоизмерительных устройств». «Наукова думка», Киев, 1967.

3. Аркадьев В. К. Электромагнитные процессы в металлах. ОНТИ, ч. I, 1935, ч. II, 1936.

4. Кухаркин Е. С. Основы инженерной электрофизики, ч. 1, «Высшая школа», М., 1969.

5. Буль Б. К. Основы теории и расчета магнитных цепей. Изд. «Энергия», М., 1964.

Н. Д. СЕМКИН, Ю. И. ФЕДОРОВ, А. А. ХИЛИТИНСКИЙ

О СПОСОБЕ УВЕЛИЧЕНИЯ ЧУВСТВИТЕЛЬНОСТИ ДАТЧИКОВ МАЛЫХ ПЕРЕМЕЩЕНИЙ, ИСПОЛЬЗУЮЩИХ ЭФФЕКТ ХОЛЛА В ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛАХ

При измерении малых перемещений с помощью датчика Холла большое значение имеет вопрос о его чувствительности, э. д. с. Холла имеет малую величину. В данной работе предлагается способ увеличения чувствительности за счет применения

Рис. 1. Схема вычитания

двух датчиков и последующего вычитания их э. д. с. (рис. 1).

Кроме того, этот способ позволяет значительно улучшить линейность характеристики $E_x = f(x)$ на довольно большом участке перемещений, где E_x э. д. с. Холла, x—перемещение. В общем виде

$$\overline{E}_x = \frac{R_x}{d} \left[\overline{I} \cdot H \right], \qquad (1)$$

где *I* — ток через датчик, *a*;