Аэромеханика и системы управления Труды, выпуск 35, 1971 г.

В. М. ГОЛОВИН, А. В. ТЕМНИКОВ, Н. В. ДИЛИГЕНСКИЙ

ЭЛЕКТРОМОДЕЛИРОВАНИЕ ПРОЦЕССА ТЕПЛООБМЕНА ПРИ ЛАМИНАРНОМ ТЕЧЕНИИ ЖИДКОСТИ В ТРУБЕ С УЧЕТОМ ДИССИПАТИВНОГО НАГРЕВА

Рассмотрение вопросов диссипативного нагрева жидкости при ламинарном ее движении в круглой трубе имеет большое значение при расчетах протяженных трубопроводов для транспорта вязкой жидкости и расчетах теплообменных аппаратов различного типа.

Аналитически указанная задача была решена в работах Л. И. Кудряшева и В М. Головина ([1]. Однако аналитическое решение приводит к необходимости вычисления бесконечных рядов довольно сложного вида, включающих функции Похгаммера. Особенно трудоемки эти вычисления для начального участка трубы. Методы математического моделирования рассматриваемых явлений позволяли бы значительно упростить вычислительную работу и получить приемлемые для практики результаты с наименьшей затратой труда и времени.

Одним из таких методов является метод электрического моделирования, предлагаемый авторами в настоящей работе.

Рассматриваемая задача, как известно [1], математически формулируется в виде дифференциального уравнения

$$\frac{1}{4}\left(1-\eta\right)\frac{\partial\Theta}{\partial\zeta} = \frac{\partial}{\partial\eta}\left(\eta\frac{\partial\Theta}{\partial\eta}\right) + 4D_0\eta \tag{1}$$

при соответствующих граничных условиях, которые будут рассмотрены ниже.

Здесь
$$\eta = \left(\frac{r}{R}\right)^2$$
;
 $r -$ текущий радиус;
 $R -$ радиус трубы;

 $\Theta = \frac{T - T_0}{T_1 - T_0}$ — относительная избыточная температура; T_м и T_о — масштабная и наименьшая температуры в задаче; $\zeta = \frac{1}{p_o} \cdot \frac{r}{p};$ $Pe = \frac{2WRpCg}{\lambda}$ — число Пекле; z — координата вдоль оси трубы; $D_0 = \frac{\mu}{\lambda (T_u - T_0)} w^2$ – диссипативный фактор; μ., λ-соответственно вязкость и теплопроводность жидкости; w -- средняя по расходу скорость жидкости при параболическом распределении по Пуазейμ_i = c_i лю. Граничные условия рассмотрим ⁷ Іраничные условия рассмотр следующих 3-х частных случаев: лля 1. Чисто диссипативный нагрев жидкости. Puc. 1. В этом случае удобно принять $T_0 =$

T_w, граничные условия принимают вид:

$$\Theta_{\zeta=0} = 0; \quad \Theta_{\eta=1} = 0; \quad \zeta > 0; \quad \frac{\partial \Theta}{\partial \eta_{\eta=0}} = 0.$$
 (2)

2. Охлаждение при диссипативном нагреве. Положив $T_0 = T_w$, получаем граничные условия:

$$\Theta_{\zeta=0} = \frac{T_1 - T_w}{T_m - T_w}; \ \Theta_{\eta=1} = 0; \ \zeta > 0; \ \frac{\partial \Theta}{\partial \eta_{\eta=0}} = 0;$$
(3)

где T₁ — температура в жидкости на входе в трубу.

3. Нагрев с учетом диссипации.

В этом случае положим $T_0 = T_1$, тогда

$$\Theta_{\zeta=0} = 0; \quad \Theta_{\eta=1} = \frac{T_{w} - T_{1}}{T_{M} - T_{t}}; \quad \zeta > 0; \quad \frac{\partial \Theta}{\partial \eta_{\eta=0}} = 0. \tag{4}$$

Для удобства моделирования введем в уравнение (1) новую переменную

$$v = \frac{\Theta}{D_0} , \qquad (5)$$

тогда уравнение (1) преобразуется к виду

$$\frac{1}{4}\left(1-\eta\right)\frac{\partial v}{\partial \zeta} = \frac{\partial}{\partial \eta}\left(\eta\frac{\partial v}{\partial \eta}\right) + 4\eta. \tag{6}$$

24

Запишем (6) в дискретной форме [2]

$$\left(\frac{1-\eta_i}{4}\right)\frac{\partial v}{\partial \zeta} = \frac{v_{i-1}-v_i}{\frac{2\Delta\eta}{2i-1}} + \frac{v_{i+1}-v_i}{\frac{2\Delta\eta}{2i+1}} + 4\eta_i.$$
 (7)

С другой стороны, по 1-ому закону Кирхгофа в безразмерном виде для узла *і* электрической сетки (см. рис. 1) имеем

$$c_{i} \frac{\partial \overline{U}_{i}}{\partial F_{0^{9}}} = \frac{\overline{U}_{i-1} - \overline{U}_{i}}{\frac{R_{i-1}}{R_{M}}} + \frac{\overline{U}_{i+1} - \overline{U}_{i}}{\frac{R_{i}}{R_{M}}} + \frac{\overline{U}_{M} - \overline{U}_{i}}{\frac{R_{ul}}{R_{M}}}.$$
 (8)

В этом уравнении

 $c_{i} = \frac{c_{i}}{c_{M}}$ — безразмерная электрическая емкость; c_{i} — узловая электрическая емкость; c_{M} — масштабное значение емкости; $\overline{u} = \frac{u - u_{0}}{u_{N} - u_{0}}$ — безразмерный электрический потенциал; $u_{M} - u_{0}$ — масштабная разность потенциалов; Fo³ = $\frac{\tau_{9}}{R_{M}c_{M}}$ — электрический аналог критерия Фурье; R_{t} — омические сопротивления сетки; R_{M} — масштабное сопротивление.

Сопоставляя (7) и (8), получим формулы для расчета параметров электрической модели:

$$c_{l} = c_{M} \left(\frac{1-\eta_{l}}{4}\right) (9), \quad \text{Fo}^{9} = \zeta (10), \quad R_{l-1} = \frac{2\Delta\eta}{2l-1} R_{M} (11),$$
$$R_{l} = \frac{2\Delta\eta}{2l+1} R_{M} (12), \quad R_{ul} = \frac{\overline{u}_{M} - \overline{u}_{l}}{4\eta_{l}} R_{M} (13)$$

Если выбрать масштабный потенциал значительно больше потенциала в узле, т. е. $\overline{u}_{\rm M} \gg \overline{u}_i$, а также учитывать, что $\overline{u}_{\rm M} = 1$, выражение (13) можно преобразовать к виду

$$\overline{R}_{ul} = \frac{1}{4\eta_i} R_{\text{M}}.$$
⁽¹⁴⁾

При использовании новой переменной *v* граничные условия принимают вид:

1. Чисто диссипативный нагрев

$$v_{\zeta=0} = 0, \ v_{\eta=0} = 0, \ \zeta > 0 \ \frac{\partial v}{\partial \eta_{\eta=0}} = 0.$$
 (15)

2. Охлаждение при диссипативном нагреве

$$v_{\zeta=0} = \frac{T_1 - T_w}{D_0(T_m - T_w)}, \ v_{\eta=1} = 0, \ \zeta > 0 \ \frac{\partial v}{\partial \eta_{\eta=0}} = 0.$$
(16)

25

3. Нагрев с учетом диссипации

$$v_{\zeta=0} = 0, \ v_{\eta=1} = \frac{T_w - T_0}{D_0(T_M - T_0)}, \ \zeta > 0 \ \frac{\partial v}{\partial \eta_{\eta=0}} = 0$$
(17)

На рис. 2 изображена схема моделирования, рассчитанная по формулам (6)—(9), (11). При расчете модели был выбран равномерный шаг по $\eta \ \Delta \eta = \frac{1}{6}$; было также принято $R_{\rm M} = 18,68 \ \kappa o m$; $c_{\rm M} = 48 \ mgb$.

Puc. 2.

Значения сопротивлений и емкостей, рассчитанные при указанных исходных величинах, приведены в таблице 1.

Таблица І

Параметры электрической сетки для решения уравнения теплообмена с учетом диссипации

Номер точки	<i>R</i> 1, ком	С _і , мф	R _i , ком
0	6,23	12	
1	2,08	10	560
2	1,20	8	280
3	0,89	0	180,8
4	0,692	4	140
5	0,565	2	112
6	· - ·	_	93.2

На рис. З даны результаты электромоделирования уравнения (1) с граничными условиями (2) и аналитического решения, полученного в работе [1].

Максимальная погрешность электромоделирования во всей области решения не превышает 6%.

На рис. 4 приведен температурный рельеф для случая нагрева с учетом диссипации.

Puc. 3.

ЛИТЕРАТУРА

1. Л. И. Кудряшев, В. М. Головин. Труды КуАИ, выпуск XV, стр. 27—45, Куйбышев, 1962. 2. Б. А. Волынский, В. Е. Бухман. Модели для решения краевых за-дач. Москва, 1960.